中文名 | 新橙皮苷 |
英文名 | neohesperidin |
别名 | 桔皮苷 柑果苷 新桔皮苷 新橙皮甙 新橙皮苷 新陈皮苷 新橙皮苷(标准品) 新橙皮苷, 来源于枳 新橙皮甙,柑果苷,桔皮苷,新陈皮苷 |
英文别名 | neohesperidin HESPERETIN-7-NEOHESPERIDOSIDE HESPERETIN-7-O-NEOHESPERIDOSIDE (s)-a-d-glucopyranosyl)oxy)-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl) 4h-1-benzopyran-4-one,2,3-dihydro-7-((2-o-(6-deoxy-alpha-l-mannopyranosyl)-bet (S)-4-Methoxy-3,5,7-trihydroxyflavanone-7-[O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranoside 5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-4-oxo-3,4-dihydro-2H-chromen-7-yl 2-O-(6-deoxyhexopyranosyl)hexopyranoside (2S)-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-4-oxo-3,4-dihydro-2H-chromen-7-yl 2-O-(6-deoxy-L-mannopyranosyl)-beta-D-glucopyranoside (2S)-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-4-oxo-3,4-dihydro-2H-chromen-7-yl 2-O-(6-deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranoside 7-[[4,5-dihydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxy-6-methyl-2-oxanyl)oxy]-2-oxanyl]oxy]-5-hydroxy-2-(3-hydroxy-5-methoxyphenyl)-3,4-dihydro-2H-1-benzopyran-4-one |
CAS | 13241-33-3 |
EINECS | 236-216-9 |
化学式 | C28H34O15 |
分子量 | 610.56 |
InChI | InChI=1/C28H34O15/c1-10-21(33)23(35)25(37)27(39-10)43-26-24(36)22(34)19(9-29)42-28(26)40-12-6-14(31)20-15(32)8-17(41-18(20)7-12)11-3-4-16(38-2)13(30)5-11/h3-7,10,17,19,21-31,33-37H,8-9H2,1-2H3/t10-,17-,19+,21-,22+,23+,24-,25+,26+,27-,28+/m0/s1 |
InChIKey | ARGKVCXINMKCAZ-RTFRIYMLSA-N |
密度 | 1.65±0.1 g/cm3(Predicted) |
熔点 | 239-243°C |
沸点 | 933.7±65.0 °C(Predicted) |
比旋光度 | -100 (c, 0.5 in Py) |
闪点 | 306.7°C |
水溶性 | 3.98mg/L at 20℃ |
蒸汽压 | 0Pa at 20℃ |
溶解度 | DMSO (微溶) 、吡啶 (微溶) |
折射率 | 1.695 |
酸度系数 | 7.14±0.40(Predicted) |
存储条件 | Sealed in dry,2-8°C |
敏感性 | Sensitive to light |
外观 | 整洁 |
颜色 | White to Off-White |
BRN | 74945 |
物化性质 | 白色粉末,易溶于甲醇,几乎不溶于乙醚,来源于枳壳,酸橙幼果,柑橘。 |
MDL号 | MFCD16661259 |
体外研究 | Neohesperidin,一种在柑橘类水果中发现的黄酮糖苷,是一种抗氧化剂。在1,1-diphenyl-2-picryldydrazyl (DPPH) 自由基清除试验中,Neohesperidin作为抗氧化剂,IC50为22.31微克/毫升。Neohesperidin (50 毫克/千克)显著抑制HCl/乙醇诱导的胃损伤,并且增加粘液含量。在幽门结扎的大鼠体内,neohesperidin (50毫克/千克)显著减少胃分泌液和胃酸产生的量,并且升高PH值。此外,Neohesperidin抑制Caco-2,CEM/ADR5000和CCRF-CEM白血病细胞的生长,IC50 值分别为0.17,0.17以及0.12 mM。 |
安全术语 | S22 - 切勿吸入粉尘。 S24/25 - 避免与皮肤和眼睛接触。 |
WGK Germany | 3 |
RTECS | DJ2981400 |
FLUKA BRAND F CODES | 10-21 |
海关编号 | 29389090 |
下游产品 | 新橙皮甙二氢查尔酮 |
参考资料 展开查看 | 1. 邓可众 邓敏芝 熊英 等. HPLC法同时分析酸橙果实类药材中黄酮和香豆素类成分[J]. 中药材 2016年39卷3期 575-578页 MEDLINE ISTIC PKU 2016. 2. 马雪松, 邹兵, 尹丽波,等. 多指标优选麸炒枳实的炮制工艺研究[J]. 中国医药指南, 2012, 010(009):72,74. 3. 尹丽波, 赵启苗, 林桂梅,等. 枳实软化和切制的工艺研究[J]. 亚太传统医药, 2012(01):31-35. 4. 姚东, 孟宪生, 王帅,等. 气滞胃痛颗粒全时段多波长融合指纹图谱研究及多成分定量分析[J]. 中国中药杂志, 2013, 38(10):1513. 5. 梁琰, 张贵民, 苏瑞强,等. 小儿消积止咳口服液多指标成分分析及其HPLC指纹图谱研究[J]. 中草药, 2017(21):79-86. 6. 黄湘 陈丰连 曹骋 等. HPLC-ELSD全成分指纹图谱研究疏肝理脾方配伍前后化学成分的变化[J]. 化学与生物工程 2020 037(001):59-64. 7. 郭琳 黄平情 于颖超 等. HPLC法同时测定胃康宁颗粒中5种成分的含量[J]. 中华中医药杂志 2020 v.35(01):139-142. 8. 沈虹 邓可众 钟志奎 等. HPLC法同时测定酸橙花的多成分含量及不同花期的质量分析[J]. 中药材 2018 041(008):1914-1917. 9. 邓可众 陈虹 熊艺 等. 不同产地及不同采收期江枳实的UPLC指纹图谱研究[J]. 中药材 2017 040(009):2051-2054. 10. 许守超, 陈屠梦, 包绍印,等. 基于响应面试验设计优选衢枳壳多指标成分工艺研究[J]. 中药材 2019年42卷11期, 2617-2621页, MEDLINE ISTIC PKU, 2020. 11. 董丽萍, 赵家莹, 詹梁,等. 经典名方温胆汤中枳实模拟古法的炮制工艺与质量控制研究[J]. 上海中医药杂志, 2019, v.53;No.597(10):96-102. 12. 戚华文,徐鑫,温柔,高德嵩,王超然,刘艳芳,金红利,梁鑫淼.基于化学模式识别技术的枳实HPLC定量指纹图谱研究[J].分析测试学报,2021,40(01):72-78. 13. ]赵衍辉,刘婷婷,满靖怡,王淼,赵旻,赵春杰.HPLC法同时测定三化汤中7种成分的含量[J].沈阳药科大学学报,2021,38(03):272-278. 14. 刘嘉丽,刘德明,王丹,张鸿,董新荣,童建华.湖南柑橘果皮总黄酮及橙皮苷含量分析[J].湖南农业科学,2020(11):58-62. 15. 薛梦洁,于卉娟,王璐瑶,柴欣,杨静,王跃飞.血府逐瘀汤提取过程中成分的量变规律研究[J].天津中医药,2021,38(01):109-112. 16. 彭芳芳,林桂梅.枳实生制品提取液中黄酮类成分及其单体在Caco-2细胞模型中的吸收转运研究[J].中华中医药学刊,2021,39(01):107-110. 17. 张雪,朱子豪,章博,郭兴杰.纤维素键合手性固定相法分离5种黄烷酮糖苷类药物异构体[J].沈阳药科大学学报,2020,37(10):903-907. 18. Naymul Karim, Mohammad Rezaul Islam Shishir, Wei Chen, Surface decoration of neohesperidin-loaded nanoliposome using chitosan and pectin for improving stability and controlled release, International Journal of Biological Macromolecules, Volume 164, 2020, P 19. Wang, Sw., Sheng, H., Bai, Yf. et al. Neohesperidin enhances PGC-1α-mediated mitochondrial biogenesis and alleviates hepatic steatosis in high fat diet fed mice. Nutr. Diabetes 10, 27 (2020). https://doi.org/10.1038/s41387-020-00130-3 20. Zhang X, Han L, Liu J, et al. Pharmacokinetic Study of 7 Compounds Following Oral Administration of Fructus Aurantii to Depressive Rats. Frontiers in Pharmacology. 2018 ;9:131. DOI: 10.3389/fphar.2018.00131. PMID: 29556193; PMCID: PMC5845165. 21. Zhang, Jing, et al. "Application of “spider-web” mode in discovery and identification of Q-markers from Xuefu Zhuyu capsule." Phytomedicine 77 (2020): 153273.https://doi.org/10.1016/j.phymed.2020.153273 22. [IF=5.81] Zhang Xianhua et al."Pharmacokinetic Study of 7 Compounds Following Oral Administration of Fructus Aurantii to Depressive Rats."Front Pharmacol. 2018 Mar;0:131 23. [IF=7.514] Jing Zhao et al."A sensitive and practical ELISA for analyzing naringenin in pummelo and herb samples."Food Chem. 2021 Nov;362:130223 24. [IF=7.053] Mohammad Rezaul Islam Shishir et al."Pectin-chitosan conjugated nanoliposome as a promising delivery system for neohesperidin: Characterization, release behavior, cellular uptake, and antioxidant property."Food Hydrocolloid. 2019 Oct;95:432 25. [IF=6.953] Naymul Karim et al."Suppression of palmitic acid-induced hepatic oxidative injury by neohesperidin-loaded pectin-chitosan decorated nanoliposomes."Int J Biol Macromol. 2021 Jul;183:908 26. [IF=6.543] Wang Yue et al."Polymethoxyflavones in Citrus Regulate Lipopolysaccharide-Induced Oscillating Decay of Circadian Rhythm Genes by Inhibiting Nlrp3 Expression."Oxid Med Cell Longev. 2021;2021:8419415 27. [IF=6.529] Yuqi Ying et al."Pharmacokinetic-Pharmacodynamic Modeling of the Antioxidant Activity of Quzhou Fructus Aurantii Decoction in a Rat Model of Hyperlipidemia."Biomed Pharmacother. 2020 Nov;131:110646 28. [IF=5.34] Jing Zhang et al."Application of “spider-web” mode in discovery and identification of Q-markers from Xuefu Zhuyu capsule."Phytomedicine. 2020 Oct;77:153273 29. [IF=5.279] Jiajing Chen et al."Primary Bitter Taste of Citrus is Linked to a Functional Allele of the 1,2-Rhamnosyltransferase Gene Originating from Citrus grandis."J Agr Food Chem. 2021;69(34):9869–9882 30. [IF=5.162] Naymul Karim et al."Surface decoration of neohesperidin-loaded nanoliposome using chitosan and pectin for improving stability and controlled release."Int J Biol Macromol. 2020 Dec;164:2903 31. [IF=4.952] Si Tan et al."The effects of drying methods on chemical profiles and antioxidant activities of two cultivars of Psidium guajava fruits."Lwt Food Sci Technol. 2020 Jan;118:108723 32. [IF=4.952] Yan Tian et al."Interaction between pH-shifted β-conglycinin and flavonoids hesperetin/hesperidin: Characterization of nanocomplexes and binding mechanism."Lwt Food Sci Technol. 2021 Apr;140:110698 33. [IF=4.534] Chuanxin Zhang et al."Neohesperidin promotes the osteogenic differentiation of human bone marrow stromal cells by inhibiting the histone modifications of lncRNA SNHG1."Cell Cycle. 2021;20(19):1953-1966 34. [IF=4.411] Liuyi Yu et al."Systematic Detection and Identification of Bioactive Ingredients from Citrus aurantium L. var. amara Using HPLC-Q-TOF-MS Combined with a Screening Method."Molecules. 2020 Jan;25(2):357 35. [IF=4.357] Wang Si-wei et al."Neohesperidin enhances PGC-1α-mediated mitochondrial biogenesis and alleviates hepatic steatosis in high fat diet fed mice."Nutr Diabetes. 2020 Aug;10(1):1-11 36. [IF=3.361] Yanhui Zhao et al."Rapid characterization of the chemical constituents of Sanhua decoction by UHPLC coupled with Fourier transform ion cyclotron resonance mass spectrometry."Rsc Adv. 2020 Jul;10(44):26109-26119 37. [IF=3.216] Shuai Yuan et al."Neohesperidin Ameliorates Steroid-Induced Osteonecrosis of the Femoral Head by Inhibiting the Histone Modification of lncRNA HOTAIR."Drug Des Dev Ther. 2020; 14: 5419–5430 38. [IF=2.391] Tan Si et al."Effects of three drying methods on polyphenol composition and antioxidant activities of Litchi chinensis Sonn.."Food Sci Biotechnol. 2020 Mar;29(3):351-358 39. [IF=2.629] Mu Qixuan et al."Study on Closely Related Citrus CMMs based on Chemometrics and Prediction of Components-Targets-Diseases Network by Ingenuity Pathway Analysis."Evid-Based Compl Alt. 2022;2022:1106353 40. [IF=3.935] Junmao Li et al."Comprehensive chemical profiling of the flowers of Citrus aurantium L. var. amara Engl. and uncovering the active ingredients of lipid lowering."J Pharmaceut Biomed. 2022 Mar;211:114621 41. [IF=6.576] Junkun Pan et al."Inhibition of Dipeptidyl Peptidase-4 by Flavonoids: Structure–Activity Relationship, Kinetics and Interaction Mechanism."Frontiers in Nutrition. 2022; 9: 892426 |
微信搜索化工百科或扫描下方二维码,添加化工百科小程序,随时随地查信息!