将动物胰脏(主要为猪的,也可用牛、羊、鸡或鸭的)搅碎,然后经过磨浆、烘干,再用乙醚浸取脱脂、粉碎以后,加入适量的元明粉即为成品。
中文名 | 胰酶 |
英文名 | Pancreatin |
别名 | 胰酶 胰酵 胰酵素 胰液素 胰消化素 胰酶来源于猪胰腺 胰酶(11×USP) 胰液素 来源于猪胰腺 胰酵素,胰醇素,胰液素 |
英文别名 | ilozyme intrazyme Pancreatin PANCREATIN beefviokase diastasevera PANCREATIN, 3X PANCREATIN 4X NF PANCREATIN 4X USP GRANULAR |
CAS | 8049-47-6 |
EINECS | 232-468-9 |
化学式 | N/A |
密度 | 1.4-1.52 |
水溶性 | Soluble in water. Insoluble in alcohol and ether. |
蒸汽压 | 0Pa at 25℃ |
溶解度 | 溶于或部分溶于水,形成微混浊溶液; 几乎不溶于乙醇 (96%) 和乙醚。 |
存储条件 | -20°C |
稳定性 | 稳定。与醇、强酸不相容。 |
敏感性 | Sensitive to light |
外观 | 粉末 |
颜色 | beige |
Merck | 13,7075 |
物化性质 | 胰酶系自猪、羊或牛胰中提取的多种酶的混合物。为类白色或微带黄色的粉末,部分溶于水,水溶液在Ph2 ~3时稳定,在pH6以上不稳定,Ca2+的存在可增加其稳定性。部分溶于低浓度的乙醇溶液中,不溶于高浓度乙醇、丙酮和乙醚等有机溶剂中,微臭,但无霉败的臭气,有引湿性。遇酸、热及重金属、鞣酸等蛋白质沉淀剂产生沉淀,失去酶的活力。胰酶制剂为胰酶的肠溶片,除去肠溶衣后,显白色或淡黄色。在中性或微酸性时效力最好,故多与碳氢钠同服。 |
MDL号 | MFCD00131789 |
危险品标志 | Xn - 有害物品 |
风险术语 | R36/37/38 - 刺激眼睛、呼吸系统和皮肤。 R42 - 吸入可能致敏。 R42/43 - 吸入及皮肤接触可能致敏。 |
安全术语 | S22 - 切勿吸入粉尘。 S24 - 避免皮肤接触。 S26 - 不慎与眼睛接触后,请立即用大量清水冲洗并征求医生意见。 S36/37 - 穿戴适当的防护服和手套。 S37/39 - 戴适当的手套和护目镜或面具。 |
WGK Germany | 1 |
RTECS | RT9033000 |
FLUKA BRAND F CODES | 3-10 |
TSCA | Yes |
海关编号 | 35079090 |
上游原料 | 锗 |
下游产品 | L-色氨酸 邻氯苯亚甲基丙二腈 硫酸软骨素 |
参考资料 展开查看 | 1. 宋文刚 孙立伟 李玉. 人参皂苷Rb1美白功效的初步研究[J]. 吉林农业大学学报 2010 32(005):498-499. 2. 李智 艾连中 丁文宇 等. 可溶性膳食纤维对玉米淀粉体外消化的抑制作用[J]. 食品工业科技 2019(19):1-6. 3. 包立军 何莉. 响应面法优化水酶法提取猫屎瓜籽油的工艺研究[J]. 粮食与油脂 2017 030(010):30-32. 4. 张鑫, 闫卫疆, 高宏伟,等. 基于高蛋白棉籽粕优质产蛋鸡饲料配方的优化[J]. 中国饲料, 2018, 619(23):27-31. 5. 唐志红, 余良, 孙雍荣,等. 小龙虾副产物分离蛋白抗氧化肽的制备[J]. 食品科技, 2019. 6. 刘五州, 妥海燕, 吴国泰,等. 当归补血汤半仿生提取工艺研究[J]. 中药药理与临床, 2015, v.31;No.179(05):19-22. 7. 陈梦霏, 周娟娟, 吴书建,等. 模拟胃肠消化提高蛹虫草蛋白的体外抗氧化活性[J]. 现代食品科技, 2020, v.36;No.246(02):76-83. 8. 沈庆霞, 路兴花, 庞林江,等. 灭菌方式对甘薯水磨年糕品质特性的影响[J]. 食品科技, 2017(5):76-80. 9. 林祥娜, 王光强, 杨昳津,等. 短乳杆菌AR247的抗氧化成分及其抗衰老作用[J]. 中国食品学报, 2020, v.20(03):43-50. 10. 王立, 卞欢, 吴海虹,等. 超声辅助酶解鹅肝蛋白的动力学和热力学及酶解物抗氧化性能[J]. 江苏农业学报, 2017, v.33(06):1395-1401. 11. 吕慧娟, 郭兵, 韩建东,等. 酶法提取金针菇菇根寡糖的研究初报[J]. 山东农业科学, 2015(2):114-118. 12. 狄蕊,张珍,张盛贵,吕锦弟,宋涛,刘雅,刘倩.酶法辅助提取牦牛血中超氧化物歧化酶的工艺条件优化[J].食品与发酵科技,2017,53(03):8-13+28. 13. 蔡沙,施建斌,隋勇,何建军,陈学玲,范传会,蔡芳,梅新.马铃薯淀粉物化特性分析及其对马铃薯热干面品质影响[J].现代食品科技,2019,35(01):72-81. 14. 蔡沙, 隋勇, 施建斌,等. 马铃薯膳食纤维物化特性分析及其对马铃薯热干面品质的影响[J]. 食品科学, 2019(4):87-94. 15. 高霞, 陈彦, 王莹,等. 淫羊藿苷仿生酶解过程的多因素考察[J]. 药学学报, 2013(11):1716-1721. 16. 王立, 邹烨, 张新笑,等. 高稳定性鸭肝多肽饮品的配方优化及其抗氧化性能[J]. 食品科学, 2018, v.39;No.583(18):262-268. 17. 张建萍, 蔡望秋, 陈尚龙,等. 胃,肠消化后猪肝酱中铁和锌的形态分析[J]. 中国酿造, 2019, v.38;No.332(10):181-184. 18. 梅娜娜 娄在祥 王洪新 寇兴然 孟映霞.体外模拟消化液对金钗石斛的作用[J].食品科学 2018 39(05):33-39. 19. 王瑞, 陈波伟, 杨晓萍,等. 食物基质对模拟消化茶多酚含量及抗氧化活性的影响[J]. 华中农业大学学报, 2017(06):105-112. 20. 王晓敏 宣锦 卢芳国 等. 仙茅多糖对巨噬细胞分泌几种活性因子的影响[J]. 中国民族民间医药 2017 026(007):32-34 38. 21. 尧蓓, 邹义龙, 梁靓靓. 柴枳夏及汤对胆汁反流性胃炎大鼠胃黏膜的保护作用及机制研究[J]. 药物评价研究, 2017(8). 22. 陈尚龙, 刘恩岐, 陈安徽,等. 应用体外全仿生模型初步分析2种富硒产品中硒形态及生物可给性[J]. 食品科学, 2018, 039(004):225-232. 23. 陈尚龙, 陈安徽, 刘辉,等. 应用消化系统全仿生模型分析酸奶发酵对钙形态的影响[J]. 农业工程学报, 2018, v.34;No.332(05):297-302. 24. 饶雪甜,曾新安,林松毅,刘仲华,孙佳江.黑果腺肋花楸在体外模拟消化过程中酚类物质及抗氧化性的变化规律[J].现代食品科技,2020,36(12):77-83. 25. 肖丽丽,王红英,田廷斌.扶正祛积汤对肺腺癌细胞HCC827埃克替尼耐药及对HGF/c-Met通路的影响[J].新中医,2020,52(22):6-9. 26. 庞延,卢健棋,朱智德,王庆高,温志浩,梁逸强,林浩,唐梅玲,许志亮.稳心颗粒对心肌梗死大鼠模型心肌脂肪化及E6AP、C/EBPα表达影响[J].中国中医基础医学杂志,2021,27(01):61-64. 27. 王军,杨雅娟,刘海涛,张向梅,李静.紫草素抑制PI3K/Akt/mTOR信号通路诱导人结肠癌SW480细胞凋亡和自噬的作用研究[J].药物评价研究,2021,44(02):338-343. 28. 陈丽娜,温宇旗,韩国庆,王耀新,王继明,杜芳,魏鹏飞,李颖,苏秀兰.酶解牛骨肽促进骨骼生长功效的研究[J].中国食物与营养,2020,26(09):55-60. 29. 乐乐,崔鑫儒,赵创谦,李婉麒,陈紫颖,汤柳茜,赖凤羲,艾连中,张汇.青稞多糖对玉米淀粉糊化和流变特性的影响[J].食品与生物技术学报,2020,39(10):73-81. 30. 林栋,管洪兰,陈银,周笑犁,杜斌.体外模拟消化对薏米多酚及其抗氧化活性的影响[J].食品科技,2020,45(12):201-207. 31. 李如蕊,陈欣,茹月蓉,穆宏磊,郜海燕,王振兴,阚欢.体外模拟消化过程中核桃花提取物抗氧化活性的变化[J].现代食品科技,2020,36(11):196-201+169. 32. Shu, Yang, et al. "Effect of particle size on the bioaccessibility of polyphenols and polysaccharides in green tea powder and its antioxidant activity after simulated human digestion." Journal of food science and technology 56.3 (2019): 1127-1133.https://d 33. Lingtuo Zhang, Fang Zhang, Yapeng Fang, Shaoyun Wang,Alginate-shelled SPI nanoparticle for encapsulation of resveratrol with enhanced colloidal and chemical stability,Food Hydrocolloids,Volume 90,2019,Pages 313-320,ISSN 0268-005X,https://doi.org/10. 34. Huang, Zhiting, et al. "Effects of in vitro simulated digestion on the free and bound phenolic content and antioxidant activity of seven species of seaweeds." International Journal of Food Science & Technology 56.5 (2021): 2365-2374.https://doi.org/10.1111 35. [IF=9.147] Lingtuo Zhang et al."Alginate-shelled SPI nanoparticle for encapsulation of resveratrol with enhanced colloidal and chemical stability."Food Hydrocolloid. 2019 May;90:313 36. [IF=6.953] Yang Yi et al."Structural and biological properties of polysaccharides from lotus root."Int J Biol Macromol. 2019 Jun;130:454 37. [IF=5.279] Long Liu et al."Ultrafast Screening of a Novel, Moderately Hydrophilic Angiotensin-Converting-Enzyme-Inhibitory Peptide, RYL, from Silkworm Pupa Using an Fe-Doped-Silkworm-Excrement-Derived Biocarbon: Waste Conversion by Waste."J Agr Food Chem. 2017;65(51 38. [IF=3.757] Mengliang Tao et al."Purification, modification and inhibition mechanism of angiotensin I-converting enzyme inhibitory peptide from silkworm pupa (Bombyx mori) protein hydrolysate."Process Biochem. 2017 Mar;54:172 39. [IF=2.19] Fangli Hou et al."Effects of in vitro simulated digestion on the flavonoid content and antioxidant activity of aged and fresh dried tangerine peel."J Food Process Pres. 2018 Mar;42(3):e13532 40. [IF=9.147] Xiao-Min Li et al."Investigation of the fabrication, characterization, protective effect and digestive mechanism of a novel Pickering emulsion gels."Food Hydrocolloid. 2021 Aug;117:106708 41. [IF=7.514] Cheng-li Jia et al."Generation and characterization of dipeptidyl peptidase-IV inhibitory peptides from trypsin-hydrolyzed α-lactalbumin-rich whey proteins."Food Chem. 2020 Jul;318:126333 42. [IF=7.514] Chenlu Han et al."DHA loaded nanoliposomes stabilized by β-sitosterol: Preparation, characterization and release in vitro and vivo."Food Chem. 2022 Jan;368:130859 43. [IF=7.514] Yun-Cheng Li et al."Tartary buckwheat protein hydrolysates enhance the salt tolerance of the soy sauce fermentation yeast Zygosaccharomyces rouxii."Food Chem. 2021 Apr;342:128382 44. [IF=7.514] Meigui Huang et al."Fabrication of pickering high internal phase emulsions stabilized by pecan protein/xanthan gum for enhanced stability and bioaccessibility of quercetin."Food Chem. 2021 Sep;357:129732 45. [IF=7.514] Yuyang Zhang et al."Inhibitory effect of chestnut (Castanea mollissima Blume) inner skin extract on the activity of α-amylase, α-glucosidase, dipeptidyl peptidase IV and in vitro digestibility of starches."Food Chem. 2020 Sep;324:126847 46. [IF=7.514] Hui Xue et al."Changes in physicochemical properties, gel structure and in vitro digestion of marinated egg white gel during braising."Food Chem. 2020 Nov;330:127321 47. [IF=7.514] Fei Zhou et al."Influence of processing methods and exogenous selenium species on the content and in vitro bioaccessibility of selenium in Pleurotus eryngii."Food Chem. 2021 Feb;338:127661 48. [IF=7.514] Hui Zhang et al."Effects of soluble dietary fibers on the viscosity property and digestion kinetics of corn starch digesta."Food Chem. 2021 Feb;338:127825 49. [IF=7.514] Jin Zhang et al."Identification of novel antioxidant peptides from snakehead (Channa argus) soup generated during gastrointestinal digestion and insights into the anti-oxidation mechanisms."Food Chem. 2021 Feb;337:127921 50. [IF=7.514] Yidong Xiao et al."Selenium release kinetics and mechanism from Cordyceps sinensis exopolysaccharide-selenium composite nanoparticles in simulated gastrointestinal conditions."Food Chem. 2021 Jul;350:129223 51. [IF=6.953] Hui Zhang et al."Interaction between barley β-glucan and corn starch and its effects on the in vitro digestion of starch."Int J Biol Macromol. 2019 Dec;141:240 52. [IF=6.475] Dengyu Tang et al."Comparison of the edible quality of liquid egg with different cooking methods and their antioxidant activity after in vitro digestion."Food Res Int. 2021 Feb;140:110013 53. [IF=6.312] Yanan Sun et al."Functional Components, Antioxidant Activity and Hypoglycemic Ability Following Simulated Gastro-Intestinal Digestion of Pigments from Walnut Brown Shell and Green Husk."Antioxidants-Basel. 2019 Dec;8(12):573 54. [IF=6.291] Fei Zhou et al."Assessment of speciation and in vitro bioaccessibility of selenium in Se-enriched Pleurotus ostreatus and potential health risks."Ecotox Environ Safe. 2019 Dec;185:109675 55. [IF=5.396] Lei Zhao et al."The interaction between gut microbiota and flavonoid extract from Smilax glabra Roxb. and its potent alleviation of fatty liver."Food Funct. 2021 Aug;12(17):7836-7850 56. [IF=5.268] Yaping Li et al."Study on swelling and drug releasing behaviors of ibuprofen-loaded bimetallic alginate aerogel beads with pH-responsive performance."Colloid Surface B. 2021 Sep;205:111895 57. [IF=4.952] Dingyang Lv et al."Effects of emulsion concentration on the physicochemical properties of wheat bran arabinoxylan-soy protein isolate emulsion-filled gels used as β-carotene carriers."Lwt Food Sci Technol. 2022 Jan;153:112498 58. [IF=4.952] Shuxin Tang et al."Effect of Lactobacillus plantarum-fermented mulberry pomace on antioxidant properties and fecal microbial community."Lwt Food Sci Technol. 2021 Jul;147:111651 59. [IF=4.451] Fangfang Yan et al."Comparison of the inhibitory effects of procyanidins with different structures and their digestion products against acrylamide-induced cytotoxicity in IPEC-J2 cells."J Funct Foods. 2020 Sep;72:104073 60. [IF=4.213] Zhonghui Xie et al."Rapamycin loaded TPGS-Lecithins-Zein nanoparticles based on core-shell structure for oral drug administration."Int J Pharmaceut. 2019 Sep;568:118529 61. [IF=3.512] Ruiming Xiao et al."Modulation of Gut Microbiota Composition and Short-Chain Fatty Acid Synthesis by Mogroside V in an In Vitro Incubation System."Acs Omega. 2021;6(39):25486–25496 62. [IF=3.167] Mukang Luo et al."Comparative analysis of the morphological property and chemical composition of soluble and insoluble dietary fiber with bound phenolic compounds from different algae."J Food Sci. 2020 Nov;85(11):3843-3851 63. [IF=2.72] Shujian Wu et al."Protein hydrolysates from Pleurotus geesteranus obtained by simulated gastrointestinal digestion exhibit neuroprotective effects in H2O2-injured PC12 cells."Journal Of Food Biochemistry. 2021 Jul 26 64. [IF=2.72] Mengcong Liu et al."Effect of digestion on bound phenolic content, antioxidant activity and hypoglycemic ability of insoluble dietary fibre from four Triticeae crops."J Food Biochem. 2021 Jun;45(6):e13746 65. [IF=2.659] G.Y. Xiong et al."Process optimization and the relationship between the reaction degree and the antioxidant activity of Maillard reaction products of chicken liver protein hydrolysates."Poultry Sci. 2020 Jul;99:3733 66. [IF=2.366] Zhang Yu et al."Identification and characterization of two novel antioxidant peptides from silkworm pupae protein hydrolysates."Eur Food Res Technol. 2021 Feb;247(2):343-352 67. [IF=1.713] Hui Zhang et al."Antioxidant and in vitro digestion property of black rice (Oryza sativa L.): a comparison study between whole grain and rice bran."Int J Food Eng. 2020 Sep;16(9): 68. [IF=9.381] Yuying Chen et al.Stability and surface properties of selenium nanoparticles coated with chitosan and sodium carboxymethyl cellulose.Carbohyd Polym. 2021 Nov;:118859 69. [IF=1.718] HUA Li Yue et al."Determination of SOD in black ginger extract and its effect on the liver of rats with type 2 diabetes."Food Sci Tech-Brazil. 2022 Mar;42: 70. [IF=4.952] Chengbin Zhao et al."Ultrasound-induced red bean protein–lutein interactions and their effects on physicochemical properties, antioxidant activities and digestion behaviors of complexes."Lwt Food Sci Technol. 2022 Apr;160:113322 71. [IF=5.279] Shujian Wu et al."Novel Selenium Peptides Obtained from Selenium-Enriched Cordyceps militaris Alleviate Neuroinflammation and Gut Microbiota Dysbacteriosis in LPS-Injured Mice."J Agr Food Chem. 2022;70(10):3194–3206 72. [IF=4.411] Xian Lin et al."Storage Stability and In Vitro Bioaccessibility of Liposomal Betacyanins from Red Pitaya (Hylocereus polyrhizus)."Molecules. 2022 Jan;27(4):1193 73. [IF=6.475] Chaoyi Xue et al."Release profiles of beef myofibril protein-bound heterocyclic amines and effects of dietary components on in vitro digestion."Food Res Int. 2022 May;155:111006 74. [IF=6.576] Jin Wang et al."Effect of Frying Process on Nutritional Property, Physicochemical Quality, and in vitro Digestibility of Commercial Instant Noodles."Front Nutr. 2022; 9: 823432 75. [IF=4.35] Zixuan Zhao et al."Color, Starch Digestibility, and In Vitro Fermentation of Roasted Highland Barley Flour with Different Fractions."Foods. 2022 Jan;11(3):287 76. [IF=7.491] Xieqi Luo et al."Effect of ultrasonic treatment on the stability and release of selenium-containing peptide TSeMMM-encapsulated nanoparticles in vitro and in vivo."Ultrason Sonochem. 2022 Feb;83:105923 77. [IF=7.514] Chaoyi Xue et al."Release mechanism between sarcoplasmic protein–bound and free heterocyclic amines and the effects of dietary additives using an in-vitro digestion model."Food Chem. 2022 May;377:131993 78. [IF=3.167] Jianhua Liu et al."Interaction characterization of zein with cyanidin-3-O-glucoside and its effect on the stability of mulberry anthocyanins and protein digestion."Journal Of Food Science. 2021 Dec 26 79. [IF=7.491] Jinrong Xiao et al."Effects of ultrasound on the degradation kinetics, physicochemical properties and prebiotic activity of Flammulina velutipes polysaccharide."Ultrason Sonochem. 2022 Jan;82:105901 80. [IF=9.381] Hailong Li et al."Effects of in vitro digestion and fermentation of Nostoc commune Vauch. polysaccharides on properties and gut microbiota."Carbohyd Polym. 2022 Apr;281:119055 |
将动物胰脏(主要为猪的,也可用牛、羊、鸡或鸭的)搅碎,然后经过磨浆、烘干,再用乙醚浸取脱脂、粉碎以后,加入适量的元明粉即为成品。
本品系自猪、羊或牛胰中提取的多种酶的混合物,主要为胰蛋白酶、胰淀粉酶与胰脂肪酶。按干燥品计算,每lg中含胰蛋白酶活力不得少于600单位,胰淀粉酶活力不得少于7000单位,胰脂肪酶活力不得少于4000单位。
本品为类白色至微黄色的粉末;微臭,但无霉败的臭气;有引湿性;水溶液煮沸或遇酸即失去酶活力。
取本品1.0g,置具塞锥形瓶中,加乙醚10ml密塞,时时旋动,放置约2小时后,将乙醚液倾泻至用乙醚湿润的滤纸上,滤过,残渣用乙醚10ml照上法处理,再用乙醚5ml洗涤残渣,合并滤液及洗液至已恒重的蒸发皿中,使乙醚自然挥散后,在105°C干燥2小时,精密称定,遗留脂肪不得过20mg。
取本品,在105°C干燥4小时,减失重量不得过 5.0%(通则 0831) 。
取本品,照非无菌产品微生物限度检查:微生物计数法(通则1105)和控制菌检查法(通则1106)检查。lg供试品中需氧菌总数不得过10 OOOcfu,霉菌和酵母菌总数不得过lOOcfu,不得检出大肠埃希菌。10g供试品中不得检出沙门菌。
对照品溶液的制备 取酪氨酸对照品,精密称定,加0.2mol/L盐酸溶液溶解并定量稀释制成每lml中约含50ug的溶液。供试品原液的制备取本品约0.lg ,精密称定,置乳钵中,加冷至5°C以下的氯化钙溶液(取氯化钙1.47g,加水500ml使溶解,用0.lmol/L盐酸溶液或0.lmol/L氢氧化钠溶液调节pH值至6.0〜6.2 )少量,研磨均勻,移至100ml量瓶中,用上述氯化钙溶液稀释至刻度,摇匀;精密量取适量,用冷至5°C以下的硼酸盐缓冲液(取硼砂2.85g、硼酸10.5g与氯化钠2.50g,加水使溶解成1000ml,调节pH 值至7.5 士0.1)定量稀释制成每lml中约含胰蛋白酶0.12单位的溶液。
测定法 取试管3支,分别精密量取供试品原液lml与上述硼酸盐缓冲液2ml,在40°C水浴中保温10分钟,分别精密加入在40°C水浴中预热的酪蛋白溶液(取酪蛋白对照品1.5g,加0.lmol/L氢氧化钠溶液13ml与水40ml,在60°C水浴中加热使溶解,放冷,用水稀释至100ml,调节pH 值至8.0)5ml,摇匀,立即置40°C 士0.5°C水浴中准确反应30分钟,再各精密加入5%三氯醋酸溶液5ml终止反应,混匀,滤过,取续滤液作为供试品溶液;另精密量取供试品原液1ml,加上述硼酸盐缓冲液2.0ml,在40°C水浴中保温10分钟,精密加人5%三氯醋酸溶液5ml,摇匀,置40°C士0.5°C水浴中准确反应30分钟,立即精密加人酪蛋白溶液5ml,摇勻,滤过,取续滤液作为空白对照;照紫外-可见分光光度法(通则0401) ,在275nm的波长处,测定并计算供试品溶液吸光度的平均值(A )。
供试品溶液的制备 取本品约0.3g,精密称定,置研钵中,加冷至5°C以下的磷酸盐缓冲液(取磷酸二氢钾13.61g与磷酸氢二钠35.80g,加水使溶解成1000ml,调节pH值至6.8)少量,研磨均匀,用上述磷酸盐缓冲液定量稀释制成每lml中约含胰淀粉酶10〜20单位的溶液。
测定法 取1%可溶性淀粉溶液;取经105°C干燥2小时的可溶性淀粉(供胰淀粉酶测定)1.0g,加水10mU搅匀后,边搅拌边缓缓倾入100ml沸水中,继续煮沸20分钟,放冷,用水稀释至100ml]25ml、上述磷酸盐缓冲液10ml、l.2%氯化钠溶液lml与水20ml,置250ml碘瓶中,在40°C水浴中保温10分钟,精密加入供试品溶液lml,摇匀,立即置40°C±0.5°C水浴中准确反应10分钟,加lmol/L盐酸溶液2ml终止反应,摇勻,放至室温后,精密加碘滴定液(0.05mol/L)10mU边振摇边滴加0.lmol/L氢氧化钠溶液45ml,在暗处放置20分钟5加硫酸溶液(l—4)4ml,用硫代硫酸钠滴定液(O.lmol/L)滴定至无色。另取1%可溶性淀粉溶液25ml、上述磷酸盐缓冲液10ml、1.2%氯化钠溶液lml与水20ml,置碘瓶中,在40°C 士0.5°C水浴中保温10分钟,放冷,加lmol / L盐酸溶液2ml,摇匀,加入供试品溶液1.0ml,摇勻,精密加入碘滴定液(0.05mol/L)10ml,边振摇边滴加0.lmol/L氢氧化钠溶液45ml,在暗处放置20分钟,加硫酸溶液( l-4)4ml,用硫代硫酸钠滴定液(0.lmol/L)滴定至无色,作为空白对照,每lml碘滴定液(0.05mol/L)相当于9.008mg无水葡萄糖。
供试品溶液的制备 取本品约O.lg,精密称定9置乳钵中,加冷至5°C以下的三羟甲基氨基甲烷缓冲液(取三羟甲基氨基甲烷606mg,加0.lmol/L盐酸溶液45.7ml,加水至lOOml摇匀,调节pH值至7.1)少量,研磨均匀,用上述缓冲液定量稀释制成每lml中约含胰脂肪酶8〜16单位的溶液。
测定法 取橄榄油乳液(取橄榄油4ml与阿拉伯胶7.5g,研磨均匀,缓缓加水研磨使成100ml,用高速组织捣碎机以每分钟8000转搅拌两次,每次3分钟,取乳剂在显微镜下检查,90%乳粒的直径应在3um以下,并不得有超过l0ml的乳粒)25ml、牛胆盐溶液[取牛胆盐参照试剂适量5用水制成(2—25)的溶液]2ml与水10ml置100ml烧杯中,用氢氧化钠滴定液(0.lmol/L)调节pH值至9.0,在37°C±0.1°C水浴中保温10分钟9再调节pH值至9.0,精密量取供试品溶液lml, 在37°C±0.1°C水浴中准确反应10分钟5同时用氢氧化钠滴定液(0.lmol/L)滴定使反应液的pH值恒定在9.0,记录消耗氢氧化钠滴定液(O.lmol/L )的量(ml)。
助消化药。
遮光,密封,在阴凉干燥处保存。
本品按胰酶的标示量计算,每lg含胰蛋白酶活力不得少于540单位,胰淀粉酶活力不得少于6300单位,胰脂肪酶活力不得少于3400单位。
本品为肠溶片,除去肠溶衣后,显白色至淡黄色。
同胰酶。
(1)0.3g (2)0.5g
遮光,密封,在阴凉干燥处保存。
本品按胰酶的标示量计算,以干燥品计,每lg中含胰蛋白酶活力不得少于540单位,胰淀粉酶活力不得少于6300单位,胰脂肪酶活力不得少于3400单位。
本品内容物为类白色至微黄色粉末。
同胰酶。
0.15g
遮光,密封,在阴凉干燥处保存。
微信搜索化工百科或扫描下方二维码,添加化工百科小程序,随时随地查信息!