中文名 | 杨梅素 |
英文名 | Myricetin |
别名 | 杨梅甙 杨梅酮 杨梅素 杨梅黄酮 杨梅黄素 杨梅酮, 来源于杨梅 3,3',4',5,5',7-六羥黃酮 杨梅黄酮,杨梅酮,杨梅黄素,杨梅树皮素,杨梅苷,杨梅甙 3,5,7-三羟基-2-(3,4,5-三羟基苯基)-4H-1-苯并呋喃-4-酮 |
英文别名 | Myricetin MYRISETIN Cannabiscetin MYRICETIN(CANNABISCETIN)(P) MYRICETIN(CANNABISCETIN)(RG) 3,3,4,5,5,7-Hexahydroxyflavone CANNABISCETIN(SEE MYRICETIN)(P) 3,3',4',5,5',7-Hexahydroxyflavone Myricetin, froM Myrica rubra (Lour.) Zucc. 3,3,4,4,5,7-hexahydro-2-phenyl-4H-chromen-4-one 3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)-4H-chromen-4-one 4H-1-Benzopyran-4-one, 3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl) |
CAS | 529-44-2 |
EINECS | 208-463-2 |
化学式 | C15H10O8 |
分子量 | 318.24 |
InChI | InChI=1/C15H10O8/c16-5-3-8(18)10-9(4-5)23-15(14(22)13(10)21)6-1-2-7(17)12(20)11(6)19/h1-4,16-20,22H |
InChIKey | IKMDFBPHZNJCSN-UHFFFAOYSA-N |
密度 | 1.4222 (rough estimate) |
熔点 | >300°C(lit.) |
沸点 | 377.41°C (rough estimate) |
水溶性 | Soluble in dimethyl sulfoxide,dimethyl formamide and ethanol. Insoluble in water. |
溶解度 | 乙醇: 溶解10mg/mL,澄清至非常微弱浑浊,黄色至非常深的黄绿色 |
折射率 | 1.4395 (estimate) |
酸度系数 | 6.30±0.40(Predicted) |
存储条件 | 2-8°C |
稳定性 | 吸湿性 |
外观 | 结晶 |
颜色 | Yellowish Brown |
Merck | 14,6332 |
BRN | 332331 |
物化性质 | 溶于甲醇,乙醇,丙酮,乙酸乙酯,微溶于水,难溶于氯仿、石油醚。 来源于杨梅科杨梅属植物杨梅Myrica rubra (Lour.)Sieb. et Zucc.的果实 |
MDL号 | MFCD00006827 |
安全术语 | 24/25 - 避免与皮肤和眼睛接触。 |
WGK Germany | 3 |
RTECS | LK8646000 |
FLUKA BRAND F CODES | 10 |
海关编号 | 29329990 |
上游原料 | 二氢杨梅素 |
下游产品 | 半乳糖醛酸 6-脱氧-D-葡萄糖 D-吡喃葡萄糖 D-半乳糖 |
参考资料 展开查看 | 1. 张迪文,马开,田萍,郭晓燕.基于多波长HPLC指纹图谱结合化学计量分析的金花葵质量评价研究[J].中草药,2019,50(14):3426-3432. 2. 罗婷婷, 杨明, 熊小平,等. 多种植物油中黄酮和角鲨烯分布UPLC研究[J]. 中国测试, 2018(8):62-69. 3. 王轶博, 符晓芳, 袁丽,等. 杨梅素与G-β-CD的包合作用及抗氧化性分析[J]. 食品科学, 2020, 41(4). 4. 韩林, 刘益, 罗梅,等. 杨梅素对α-葡萄糖苷酶的抑制活性机理研究[J]. 食品工业科技, 2017, 038(022):51-55,60. 5. 杨鑫,李源力,蒋萍,王冶.杨梅素通过PI3K/AKT/NF-κB信号通路对骨性关节炎发展的影响[J].暨南大学学报(自然科学与医学版),2020,41(01):48-57. 6. 张迪文 马开 田萍. UPLC-MS/MS法同时测定金花葵中11个活性成分[J]. 药物分析杂志 2019 039(005):780-786. 7. 王方方 康莹 张权 等. 北京妙峰山玫瑰花渣中黄酮类成分的UPLC/Q-TOF-MS分析[J]. 中国现代中药 2017 019(011):1550-1554. 8. 闫征 王帆 吴寒 等. 不同烫漂方式对碱蓬活性成分及抗氧化能力的影响[J]. 江苏农业学报 2017(5). 9. 余春磊,袁金娥,张鹍飞,罗小娇,齐国昌,冯宗云.回归正交试验优化超声波提取大麦中4种主要黄酮物质工艺[J].食品科学,2014,35(02):51-55. 10. 余春磊, 齐国昌, 张鹍飞,等. 大麦花后四种主要黄酮物质含量的动态变化[J]. 麦类作物学报, 2014, 34(02). 11. 夏昆瑜, 张春磊, 曹征宇,等. 黄蜀葵花的化学成分研究[J]. 海峡药学, 2019, v.31;No.236(09):62-65. 12. 杨希娟, 党斌, 樊明涛. 溶剂提取对青稞中不同形态多酚组成及抗氧化活性的影响[J]. 食品科学, 2018, 39(24):246-255. 13. 师仁丽 翟龙飞 于文龙 等. 利用DAD-HPLC和LC-MS法检测金丝小枣中黄酮类化合物[J]. 食品科学 2016(16期):123-127. 14. 孔宇, 张倚菲, 韩鹏云,等. 沙棘籽粕多酚提取工艺优化,组分分析及抗氧化性能研究[J]. 中国油脂, 2020, 045(004):109-114. 15. 黑青稞麸皮结合态酚类物质大孔树脂分离纯化工艺优化 16. 陈菁,周建桥,谭国英,李德强,范卫锋,谢菊英,钱正明.在线提取HPLC-ABTS联用快速分析枳椇子中抗氧化成分[J].药物分析杂志,2021,41(02):203-209. 17. 赵萌萌,张文刚,党斌,杨希娟,张杰,甘生智.超微粉碎对青稞麸皮粉多酚组成及抗氧化活性的影响[J].农业工程学报,2020,36(15):291-298. 18. Pei Pu, Xin Zheng, Linna Jiao, Lang Chen, Han Yang, Yonghong Zhang, Guizhao Liang, Six flavonoids inhibit the antigenicity of β-lactoglobulin by noncovalent interactions: A spectroscopic and molecular docking study, Food Chemistry, Volume 339, 2021, 128106 19. Lyu, Yunbin, et al. "Identification and characterization of three flavonoid 3-O-glycosyltransferases from Epimedium koreanum Nakai." Biochemical Engineering Journal 163 (2020): 107759.https://doi.org/10.1016/j.bej.2020.107759 20. Zhang, Cao, et al. "Chemical structures of polyphenols that critically influence the toxicity of ZnO nanoparticles." Journal of agricultural and food chemistry 66.7 (2018): 1714-1722.https://doi.org/10.1021/acs.jafc.8b00368 21. [IF=5.396] Jiachan Zhang et al."Understanding the role of extracts from sea buckthorn seed residues in anti-melanogenesis properties on B16F10 melanoma cells."Food Funct. 2018 Oct;9(10):5402-5416 22. [IF=5.279] Cao Zhang et al."Chemical Structures of Polyphenols That Critically Influence the Toxicity of ZnO Nanoparticles."J Agr Food Chem. 2018;66(7):1714–1722 23. [IF=5.279] Yingying Wei et al."Hot Air Treatment Induces Disease Resistance through Activating the Phenylpropanoid Metabolism in Cherry Tomato Fruit."J Agr Food Chem. 2017;65(36):8003–8010 24. [IF=5.165] Chunchao Zhao et al."An improved method to obtain essential oil, flavonols and proanthocyanidins from fresh Cinnamomum japonicum Sieb. leaves using solvent-free microwave-assisted distillation followed by homogenate extraction."Arab J Chem. 2020 Jan;13:20 25. [IF=3.738] Selma Houchi et al."Investigation of common chemical components and inhibitory effect on GES-type β-lactamase (GES22) in methanolic extracts of Algerian seaweeds."Microb Pathogenesis. 2019 Jan;126:56 26. [IF=1.981] Yan Qiu et al."Total Flavonoid Extract from Abelmoschus manihot (L.) Medic Flowers Attenuates d-Galactose-Induced Oxidative Stress in Mouse Liver Through the Nrf2 Pathway."J Med Food. 2017 Jun;20(6):557-567 27. [IF=11.878] Li Xinming et al."A fast and specific fluorescent probe for thioredoxin reductase that works via disulphide bond cleavage."Nat Commun. 2019 Jun;10(1):1-12 28. [IF=9.811] Manjie Gao et al."High-Crystallinity Covalent Organic Framework Synthesized in Deep Eutectic Solvent: Potentially Effective Adsorbents Alternative to Macroporous Resin for Flavonoids."Chem Mater. 2021;33(20):8036–8051 29. [IF=9.229] Linlin Deng et al."Highly Crystalline Covalent Organic Frameworks Act as a Dual-Functional Fluorescent-Sensing Platform for Myricetin and Water, and Adsorbents for Myricetin."Acs Appl Mater Inter. 2021;13(28):33449–33463 30. [IF=9.147] Jianzhong Zhu et al."Effect of Rosa Roxburghii juice on starch digestibility: A focus on the binding of polyphenols to amylose and porcine pancreatic α-amylase by molecular modeling."Food Hydrocolloid. 2022 Feb;123:106966 31. [IF=5.833] Zhou Zhidu et al."Ultra-sensitive amperometric determination of quercetin by using a glassy carbon electrode modified with a nanocomposite prepared from aminated graphene quantum dots, thiolated β-cyclodextrin and gold nanoparticles."Microchim Acta. 2020 32. [IF=4.952] Zhiqiang Hou et al."Processing of chestnut rose juice using three-stage ultra-filtration combined with high pressure processing."Lwt Food Sci Technol. 2021 May;143:111127 33. [IF=4.411] Min Yang et al."Comparative Transcriptome Analysis of Ampelopsis megalophylla for Identifying Genes Involved in Flavonoid Biosynthesis and Accumulation during Different Seasons."Molecules. 2019 Jan;24(7):1267 34. [IF=4.411] Fang Sheng et al."The Analysis of Phenolic Compounds in Walnut Husk and Pellicle by UPLC-Q-Orbitrap HRMS and HPLC."Molecules. 2021 Jan;26(10):3013 35. [IF=4.36] Li Lin et al."Study on the alleviation of Fengshi Gutong capsule on rheumatoid arthritis through integrating network pharmacology and experimental exploration."J Ethnopharmacol. 2021 Nov;280:114471 36. [IF=4.27] Zhikang Zhao et al."Functional analysis of PpRHM1 and PpRHM2 involved in UDP-l-rhamnose biosynthesis in Prunus persica."Plant Physiol Bioch. 2020 Oct;155:658 37. [IF=4.225] Gu Li-fei et al."Huangkui Capsule Ameliorates Renal Fibrosis in a Unilateral Ureteral Obstruction Mouse Model Through TRPC6 Dependent Signaling Pathways."Front Pharmacol. 2020 Jul;0:996 38. [IF=4.162] Rong Wang et al."Total Flavone of Abelmoschus manihot Ameliorates Stress-Induced Microbial Alterations Drive Intestinal Barrier Injury in DSS Colitis."Drug Des Dev Ther. 2021; 15: 2999–3016 39. [IF=3.978] Yunbin Lyu et al."Identification and characterization of three flavonoid 3-O-glycosyltransferases from Epimedium koreanum Nakai."Biochem Eng J. 2020 Nov;163:107759 40. [IF=3.935] Jingyun Zheng et al."A systematic investigation on free phenolic acids and flavonoids profiles of commonly consumed edible flowers in China."J Pharmaceut Biomed. 2019 Aug;172:268 41. [IF=3.645] Qingyu Zhang et al."Quality control of Semen Hoveniae by high-performance liquid chromatography coupled to Fourier transform-ion cyclotron resonance mass spectrometry."J Sep Sci. 2021 Sep;44(18):3366-3375 42. [IF=3.616] Hui Ma et al."Effects of microwave irradiation on the expression of key flavonoid biosynthetic enzyme genes and the accumulation of flavonoid products in Fagopyrum tataricum sprouts."J Cereal Sci. 2021 Sep;101:103275 43. [IF=2.72] Ya Wu et al."Malus hupehensis leaves extract attenuates obesity, inflammation, and dyslipidemia by modulating lipid metabolism and oxidative stress in high-fat diet-induced obese mice."J Food Biochem. 2020 Nov;44(11):e13484 44. [IF=1.554] Yafen Fu et al."Electrochemical evaluation of the antioxidant capacity of natural compounds on glassy carbon electrode modified with guanine-, polythionine-, and nitrogen-doped graphene."Open Chem. 2020 Jan;18(1):1054-1063 45. [IF=3.645] Ziyun Wei et al.Studies on chemical constituents of Flos Puerariae-Semen Hoveniae medicine pair by HPLC and Fourier transform ion cyclotron resonance mass spectrometry.Journal Of Separation Science.2021 Nov 06 46. [IF=6.475] Jinxin Li et al."Trapping of reactive carbonyl species by fiber-bound polyphenols from whole grains under simulated physiological conditions."Food Res Int. 2022 Jun;156:111142 47. [IF=4.556] Yiyu Ren et al."Metabolomics, sensory evaluation, and enzymatic hydrolysis reveal the effect of storage on the critical astringency-active components of crude Pu-erh tea."J Food Compos Anal. 2022 Apr;107:104387 48. [IF=5.753] Jianghong Gao et al."Molecular Cloning and Functional Characterization of a Sterol 3-O-Glucosyltransferase Involved in Biosynthesis of Steroidal Saponins in Trigonella foenum-graecum.."Front Plant Sci. 2021 Dec;12:809579-809579 49. [IF=4.412] Hui-Min Jin et al."Polyphenol and Anthocyanin Composition and Activity of Highland Barley with Different Colors."MOLECULES. 2022 Jan;27(11):3411 50. [IF=7.514] Jie Meng et al."Conduction of a chemical structure-guided metabolic phenotype analysis method targeting phenylpropane pathway via LC-MS: Ginkgo biloba and soybean as examples."FOOD CHEMISTRY. 2022 Oct;390:133155 51. [IF=6.576] Junkun Pan et al."Inhibition of Dipeptidyl Peptidase-4 by Flavonoids: Structure–Activity Relationship, Kinetics and Interaction Mechanism."Frontiers in Nutrition. 2022; 9: 892426 52. [IF=6.543] Liu Yilong et al."Two Myricetin-Derived Flavonols from Morella rubra Leaves as Potent α-Glucosidase Inhibitors and Structure-Activity Relationship Study by Computational Chemistry."Oxidative Medicine and Cellular Longevity. 2022;2022:9012943 53. [IF=3.713] Ren Li et al."Effects of germination time on phenolics, antioxidant capacity, in vitro phenolic bioaccessibility and starch digestibility in sorghum."INTERNATIONAL JOURNAL OF FOOD SCIENCE AND TECHNOLOGY |
微信搜索化工百科或扫描下方二维码,添加化工百科小程序,随时随地查信息!