中文名 | 姜黄素 |
英文名 | Curcumin |
别名 | 克扣明 姜黄素 姜黄色素 纳米姜黄素 水溶性姜黄素 川芎内酯 B 生物活性姜黄素 姜黄素(天然) 1,7-双(4-羟基-3-甲氧基苯基)-1,6-庚二烯-3,5-二酮 (E,E)-1,7-双(4-羟基-3-甲氧基苯基)-1,6-庚二烯-3,5-二酮 |
英文别名 | E100 haidr E-100 halad Halad Haidr Halud YO-KIN haldar souchet curcuma curouma gelbwurz Curcumin C.I. 75300 kachs haldi yellow root safra d'inde terra merita merita earth yellow ginger indian saffron tumeric yellow Natural Yellow 3 diferuloylmethane C.I. Natural Yellow 3 Curcumin, Natural Yellow 3, Diferuloylmethane 5-dione,1,7-bis(4-hydroxy-3-methoxyphenyl)-6-heptadiene-3 1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione 5-dione,1,7-bis(4-hydroxy-3-methoxyphenyl)-,(e,e)-6-heptadiene-3 6-Heptadiene-3,5-dione,1,7-bis(4-hydroxy-3-methoxyphenyl)-,(E,E)-1 1,6-Heptadiene-3,5-dione, 1,7-bis(4-hydroxy-3-methoxyphenyl)-, (E,E)- (1E,4Z,6E)-5-hydroxy-1,7-bis(4-hydroxy-3-methoxyphenyl)hepta-1,4,6-trien-3-one |
CAS | 458-37-7 |
EINECS | 207-280-5 |
化学式 | C21H20O6 |
分子量 | 368.38 |
InChI | InChI=1/C21H20O6/c1-26-20-11-14(5-9-18(20)24)3-7-16(22)13-17(23)8-4-15-6-10-19(25)21(12-15)27-2/h3-13,22,24-25H,1-2H3/b7-3+,8-4+,16-13- |
InChIKey | VFLDPWHFBUODDF-FCXRPNKRSA-N |
密度 | 0.93 |
熔点 | 183 °C |
沸点 | 418.73°C (rough estimate) |
闪点 | 208.9±23.6 °C |
水溶性 | Slightly soluble (hot) |
蒸汽压 | 6.43E-15mmHg at 25°C |
蒸汽密度 | 13 (vs air) |
溶解度 | 乙醇: 10mg/ml |
折射率 | 1.4155-1.4175 |
酸度系数 | 8.09(at 25℃) |
存储条件 | 2-8°C |
稳定性 | 稳定,但可能对光敏感。与强氧化剂不相容。 |
外观 | 粉末 |
颜色 | orange |
气味 | Odorless |
最大波长(λmax) | ['430nm'] |
Merck | 14,2673 |
BRN | 2306965 |
物化性质 | 橙黄色结晶性粉末。有特殊臭。熔点179~182℃。不溶于水和乙醚,溶于乙醇、冰醋酸、丙二醇。碱性条件下呈红褐色,酸性则呈浅黄色。与氢氧化镁形成色淀,呈黄红色。与金属离子,尤其是铁离子,形成螯合物,导致变色。约5mg/kg铁离子就开始影响色素,10mg/kg以上时变为红褐色,染色能力降低,因此需选用适当容器。最好与螯合剂六偏磷酸钠、酸式焦磷酸钠共同使用。耐光性、耐铁离子性较差,耐热性较好。染着力强(特别是对蛋白质)。每个分子结构中均有两个活性酚结构,故具有一定的抗氧化能力。 |
MDL号 | MFCD00008365 |
危险品标志 | Xi - 刺激性物品 |
风险术语 | 36/37/38 - 刺激眼睛、呼吸系统和皮肤。 |
安全术语 | 26 - 不慎与眼睛接触后,请立即用大量清水冲洗并征求医生意见。 |
WGK Germany | 3 |
RTECS | MI5230000 |
TSCA | Yes |
海关编号 | 29145000 |
Hazard Note | Irritant |
上游原料 | 乙醇 乙酐 一氯甲烷 丙二醇 正丁胺 亚硫酸氢钠溶液 |
下游产品 | 乙酰香兰素 |
参考资料 展开查看 | 1. 陈佳 江雅琴 李伟 王艳平.3种中药活性成分对耐多药鲍曼不动杆菌的体外抑菌作用[J].中国药业 2018 27(08):12-14. 2. 李照雪,胡思远,王吉烨,陈泽慧,张闪闪,张波.基于促甲状腺功能的姜黄素延长低温冷冻小鼠生存时间的作用机制研究[J].中国药理学通报,2017,33(09):1291-1297. 3. 刘晓静, 贾竞夫, 孙丽芳,等. 基于超临界CO_2抗溶剂技术的姜黄素固体脂质纳米粒研究[J]. 中药材, 2019, v.42;No.425(07):168-171. 4. 石淑先, 李庆钊, 陈晓农,等. 姜黄素/聚(α-氰基丙烯酸异丁酯)载药微球的制备及其药物释放[J]. 生物医学工程学杂志, 2018, 035(005):749-753. 5. 黄容, 陆昕怡, 韩加伟,等. 姜黄素-胡椒碱固体分散体的制备与生物利用度研究. 中草药. 6. 陆昕怡, 韩加伟, 李文,等. 姜黄素/胡椒碱固体分散体的制备及体外评价[J]. 现代中药研究与实践, 2018, 032(003):49-53. 7. 陆佳璐, 邓丽娜. 姜黄素-色氨酸共无定型的制备及其在大鼠体内的药动学研究[J]. 中国药房, 2019(17):2348-2354. 8. 施元旦, 刘玲. 姜黄素-茶氨酸共无定型复合物的制备与生物利用度研究[J]. 现代中药研究与实践, 2019, 033(005):47-53. 9. 邢永娜, 冯进, 李春阳. 姜黄素与白首乌蛋白以及大豆分离蛋白相互作用的比较[J]. 食品科学, 2020, v.41;No.623(10):62-69. 10. 钱伟伦, 高修滨, 于志文,等. 姜黄素中枢给药对胰岛素抵抗小鼠的改善作用及其机制研究[J]. 福建中医药, 2019, v.50;No.327(02):34-36+42. 11. 刘国安, 许欣欣, 李贵琛,等. 姜黄素在生化和细胞体系的抗氧化与促氧化作用[J]. 西北师范大学学报(自然科学版), 2020, 056(003):82-89. 12. 钟宇, 黄琼林, 莫明明,等. 姜黄素对H_2O_2诱导的HT29细胞氧化损伤的保护作用及机制研究[J]. 天然产物研究与开发, 2019, v.31(03):33-39. 13. 辛华,江源铭,马雷,任秀英,王莉,刘金凤,江清林.姜黄素对前列腺癌细胞C-erbB-2、Bax和Survivin表达的影响[J].中医药信息,2018,35(01):16-18. 14. 李旭炯,刘安,陈云霞,李淑芬.姜黄素对肝肺综合征大鼠的保护作用[J].中国临床药理学与治疗学,2017,22(07):738-742. 15. 张艳莉, 张彤. 姜黄素对高氧诱导的新生小鼠视网膜病变及notch通路的影响 16. 朱雯洁, 黄莉君, 叶曾联,等. 姜黄素微球制备工艺研究[J]. 广州化工, 2017, 45(023):66-68. 17. 刘乐环, 茅玉炜, 黎翊君,等. 姜黄素炎症靶向自微乳的制备及质量评价[J]. 世界科学技术-中医药现代化, 2016(12). 18. 郑君花, 王修俊, 王丽芳,等. 姜黄色素的稳定化研究[J]. 食品科技, 2015, 040(001):287-291. 19. 徐艳,张心怡,狄留庆,樊文玲.热熔挤出技术制备热敏性姜黄素固体分散体的研究[J].中草药,2018,49(17):4014-4021. 20. 冯藜枥, 曹文富, 叶凤. 莪术含药血清抑制大鼠HSC中Glil和β-catenin表达的机制研究[J]. 重庆医科大学学报, 2017, 042(003):308-314. 21. 黄阳,许美玉,黄群,安凤平,滕慧,王艺伟.蛋清粉为壁材的姜黄素微胶囊的制备[J].粮食科技与经济,2016,41(01):59-62. 22. 李浩铭,黄永杰,王永丽,李大鹏,李锋.姜黄素及其代谢修饰产物对PC12细胞氧化损伤的保护作用[J].食品科学,2020,41(15):208-215. 23. 刘佳慧, 王修俊, 郑君花,等. 酶法-微波法联合提取贵州生姜中姜黄色素及其定性分析[J]. 保鲜与加工, 2016(3):61-66. 24. 赵文平, 贾龙刚, 路福平,等. 基于β-内酰胺酶构建大肠杆菌体内Aβ42聚集抑制剂筛选体系[J]. 食品与发酵工业, 2019, 45:17-24. 25. 刘啸昂,唐辉,刘盼盼,卢志雄,陈文.姜黄素对HepG2细胞脂质沉积的改善作用及机制研究[J].上海中医药大学学报,2021,35(01):50-54. 26. 李浩铭,黄永杰,王永丽,李大鹏,李锋.姜黄素及其代谢修饰产物对PC12细胞氧化损伤的保护作用[J].食品科学,2020,41(15):208-215. 27. 纪万里,周泽华,王婷婷,安叡,梁琨,王新宏.基于UPLC-LTQ-Orbitrap-MS方法分析半夏泻心汤化学成分[J].药物分析杂志,2020,40(10):1736-1750. 28. Yan, Jing-Kun, et al. "Biocompatible polyelectrolyte complex nanoparticles from lactoferrin and pectin as potential vehicles for antioxidative curcumin." Journal of agricultural and food chemistry 65.28 (2017): 5720-5730.https://doi.org/10.1021/acs.jafc.7b 29. Liu, Zhenhong, et al. "GAPT regulates cholinergic dysfunction and oxidative stress in the brains of learning and memory impairment mice induced by scopolamine." Brain and behavior 10.5 (2020): e01602.https://doi.org/10.1002/brb3.1602 30. Huang, Meigui, et al. "Liposome co-encapsulation as a strategy for the delivery of curcumin and resveratrol." Food & function 10.10 (2019): 6447-6458.https://doi.org/10.1039/C9FO01338E 31. Liu, Gang, et al. "Maillard-reacted whey protein isolates and epigallocatechin gallate complex enhance the thermal stability of the pickering emulsion delivery of curcumin." Journal of agricultural and food chemistry 67.18 (2019): 5212-5220.https://doi.org 32. Weng, Qingxia, et al. "Fabrication of self-assembled Radix Pseudostellariae protein nanoparticles and the entrapment of curcumin." Food chemistry 274 (2019): 796-802.https://doi.org/10.1016/j.foodchem.2018.09.059 33. Sun, M. X., et al. "Effects of curcumin on the role of MMP-2 in endometrial cancer cell proliferation and invasion." Eur Rev Med Pharmacol Sci 22.15 (2018): 5033-5041. 34. Li, Pan, et al. "Curcumin metabolites contribute to the effect of curcumin on ameliorating insulin sensitivity in high-glucose-induced insulin-resistant HepG2 cells." Journal of ethnopharmacology 259 (2020): 113015.https://doi.org/10.1016/j.jep.2020.113015 35. Zeng, Yibin, et al. "Curcumin against imiquimod-induced psoriasis of mice through IL-6/STAT3 signaling pathway." Bioscience reports (2020).https://doi.org/10.1042/BSR20192842 36. Yu, Yun-Bo, et al. "Constructing biocompatible carboxylic curdlan-coated zein nanoparticles for curcumin encapsulation." Food Hydrocolloids 108 (2020): 106028https://doi.org/10.1016/j.foodhyd.2020.106028 37. Chen, Xiumin, Yanfang Yang, and Yingtao Zhang. "Isobavachalcone and bavachinin from Psoraleae Fructus modulate Aβ42 aggregation process through different mechanisms in vitro." Febs Letters 587.18 (2013): 2930-2935.https://doi.org/10.1016/j.febslet.2013.07. 38. Cai, Mengru, et al. "Amino-functionalized Zn metal organic frameworks as antitumor drug curcumin carriers." New Journal of Chemistry 44.41 (2020): 17693-17704.DOIhttps://doi.org/10.1039/D0NJ03680C 39. Ni, Wenfeng, et al. "Dual-targeting nanoparticles: codelivery of curcumin and 5-fluorouracil for synergistic treatment of hepatocarcinoma." Journal of pharmaceutical sciences 108.3 (2019): 1284-1295.https://doi.org/10.1016/j.xphs.2018.10.042 40. [IF=9.147] Binghua Sun et al."Linear dextrin as curcumin delivery system: Effect of degree of polymerization on the functional stability of curcumin."Food Hydrocolloid. 2018 Apr;77:911 41. [IF=8.758] Dan Sun et al."Novel Curcumin Liposome Modified with Hyaluronan Targeting CD44 Plays an Anti-Leukemic Role in Acute Myeloid Leukemia in Vitro and in Vivo."Acs Appl Mater Inter. 2017;9(20):16857–16868 42. [IF=5.875] Ruoning Wang et al."Involvement of metabolism-permeability in enhancing the oral bioavailability of curcumin in excipient-free solid dispersions co-formed with piperine."Int J Pharmaceut. 2019 Apr;561:9 43. [IF=5.279] Jing-Kun Yan et al."Biocompatible Polyelectrolyte Complex Nanoparticles from Lactoferrin and Pectin as Potential Vehicles for Antioxidative Curcumin."J Agr Food Chem. 2017;65(28):5720–5730 44. [IF=4.384] Rong Huang et al."Surfactant-free solid dispersion of BCS class IV drug in an amorphous chitosan oligosaccharide matrix for concomitant dissolution in vitro - permeability increase."Eur J Pharm Sci. 2019 Mar;130:147 45. [IF=4.379] Wang Jinghui et al."A New Strategy for Deleting Animal drugs from Traditional Chinese Medicines based on Modified Yimusake Formula."Sci Rep-Uk. 2017 May;7(1):1-22 46. [IF=3.738] Selma Houchi et al."Investigation of common chemical components and inhibitory effect on GES-type β-lactamase (GES22) in methanolic extracts of Algerian seaweeds."Microb Pathogenesis. 2019 Jan;126:56 47. [IF=3.534] Wenfeng Ni et al."Dual-Targeting Nanoparticles: Codelivery of Curcumin and 5-Fluorouracil for Synergistic Treatment of Hepatocarcinoma."J Pharm Sci-Us. 2019 Mar;108:1284 48. [IF=3.373] Issac Chi-Chung Cheng et al."Application of UPLC-MS/MS to simultaneously detect four bioactive compounds in the tumour-shrinking decoction (FM1523) for uterine fibroids treatment."Phytochem Analysis. 2019 Jul;30(4):447-455 49. [IF=3.361] Junke Song et al."Activation of Nrf2 signaling by salvianolic acid C attenuates NF‑κB mediated inflammatory response both in vivo and in vitro."Int Immunopharmacol. 2018 Oct;63:299 50. [IF=2.896] Lu Wang et al."Rapid assay for testing superoxide anion radical scavenging activities to natural pigments by ultra-high performance liquid chromatography-diode-array detection method."Anal Methods-Uk. 2015 Feb;7(4):1535-1542 51. [IF=2.675] Xiumin Chen et al."Isobavachalcone and bavachinin from Psoraleae Fructus modulate Aβ42 aggregation process through different mechanisms in vitro."Febs Lett. 2013 Sep;587(18):2930-2935 52. [IF=10.588] Xiang Zhang et al."Blue/yellow emissive carbon dots coupled with curcumin: a hybrid sensor toward fluorescence turn-on detection of fluoride ion."J Hazard Mater. 2021 Jun;411:125184 53. [IF=10.435] Gao Chunhong et al."Neuron tau-targeting biomimetic nanoparticles for curcumin delivery to delay progression of Alzheimer’s disease."J Nanobiotechnol. 2020 Dec;18(1):1-23 54. [IF=9.147] Yu Hu et al."Complexation with whey protein fibrils and chitosan: A potential vehicle for curcumin with improved aqueous dispersion stability and enhanced antioxidant activity."Food Hydrocolloid. 2020 Jul;104:105729 55. [IF=9.147] Yun-Bo Yu et al."Constructing biocompatible carboxylic curdlan-coated zein nanoparticles for curcumin encapsulation."Food Hydrocolloid. 2020 Nov;108:106028 56. [IF=8.947] Chunhong Gao et al."Neuronal mitochondria-targeted delivery of curcumin by biomimetic engineered nanosystems in Alzheimer's disease mice."Acta Biomater. 2020 May;108:285 57. [IF=6.023] Xixi Cai et al."Radix Pseudostellariae protein-curcumin nanocomplex: Improvement on the stability, cellular uptake and antioxidant activity of curcumin."Food Chem Toxicol. 2021 May;151:112110 58. [IF=5.875] Yanyan Yin et al."Cascade catalytic nanoplatform based on ions interference strategy for calcium overload therapy and ferroptosis."Int J Pharmaceut. 2021 Sep;606:120937 59. [IF=5.396] Yuan Liang et al."In vitro and in silico evaluation of EGFR targeting activities of curcumin and its derivatives."Food Funct. 2021 Nov;12(21):10667-10675 60. [IF=5.396] Meigui Huang et al."Liposome co-encapsulation as a strategy for the delivery of curcumin and resveratrol."Food Funct. 2019 Oct;10(10):6447-6458 61. [IF=5.268] Rui Yang et al."Mitochondrial targeting nano-curcumin for attenuation on PKM2 and FASN."Colloid Surface B. 2019 Oct;182:110405 62. [IF=5.162] Jing Han et al."Environmental stability and curcumin release properties of Pickering emulsion stabilized by chitosan/gum arabic nanoparticles."Int J Biol Macromol. 2020 Aug;157:202 63. [IF=5.121] Chunhong Gao et al."T807-modified human serum albumin biomimetic nanoparticles for targeted drug delivery across the blood–brain barrier."J Drug Target. 2020;28(10):1085-1095 64. [IF=5.076] Feifei Wang et al."Preparation, Characterization and Properties of Porous PLA/PEG/Curcumin Composite Nanofibers for Antibacterial Application."Nanomaterials-Basel. 2019 Apr;9(4):508 65. [IF=4.952] Hanyu Li et al."Entrapment of curcumin in soy protein isolate using the pH-driven method: Nanoencapsulation and formation mechanism."Lwt Food Sci Technol. 2022 Jan;153:112480 66. [IF=4.952] Feng Xue et al."Prevention of frozen-dough from deterioration with incorporation of glutenin-polyphenols conjugates prepared by ultrasound."Lwt Food Sci Technol. 2021 Nov;151:112141 67. [IF=4.946] Lai Yanni et al."3D-quantitative structure–activity relationship and antiviral effects of curcumin derivatives as potent inhibitors of influenza H1N1 neuraminidase."Arch Pharm Res. 2020 May;43(5):489-502 68. [IF=4.845] Hong Zhou et al."Functional analysis of an upregulated calmodulin gene related to the acaricidal activity of curcumin against Tetranychus cinnabarinus (Boisduval)."Pest Manag Sci. 2021 Feb;77(2):719-730 69. [IF=4.821] Le Wang et al."HPLC fingerprint and UV–Vis spectroscopy coupled with chemometrics for Curcumae radix species discrimination and three bioactive compounds prediction."Microchem J. 2021 Jul;166:106254 70. [IF=4.617] Cheng Ziting et al."Preparation and characterization of dissolving hyaluronic acid composite microneedles loaded micelles for delivery of curcumin."Drug Deliv Transl Re. 2020 Oct;10(5):1520-1530 71. [IF=4.098] Le Wang et al."Fast discrimination and quantification analysis of Curcumae Radix from four botanical origins using NIR spectroscopy coupled with chemometrics tools."Spectrochim Acta A. 2021 Jun;254:119626 72. [IF=3.996] Liu Min et al."Curcumin Alleviates Aβ42-Induced Neuronal Metabolic Dysfunction via the Thrb/SIRT3 Axis and Improves Cognition in APPTG Mice."Neurochem Res. 2021 Dec;46(12):3166-3178 73. [IF=3.935] Zhengchao Ji et al."Global identification and quantitative analysis of representative components of Xin-Nao-Kang Capsule, a traditional Chinese medicinal formula, by UHPLC-Q-TOF-MS and UHPLC-TQ-MS."J Pharmaceut Biomed. 2021 May;198:114002 74. [IF=3.69] Pan Li et al."Curcumin metabolites contribute to the effect of curcumin on ameliorating insulin sensitivity in high-glucose-induced insulin-resistant HepG2 cells."J Ethnopharmacol. 2020 Sep;259:113015 75. [IF=3.591] Mengru Cai et al."Amino-functionalized Zn metal organic frameworks as antitumor drug curcumin carriers."New J Chem. 2020 Oct;44(41):17693-17704 76. [IF=2.863] Qiang Wang et al."Effects of turmeric on reducing heterocyclic aromatic amines in Chinese tradition braised meat products and the underlying mechanism."Food Sci Nutr. 2021 Oct;9(10):5575-5582 77. [IF=2.091] Zhenhong Liu et al."GAPT regulates cholinergic dysfunction and oxidative stress in the brains of learning and memory impairment mice induced by scopolamine."Brain Behav. 2020 May;10(5):e01602 78. [IF=2.082] Qin Guo et al."Synergistic inhibition effects of tea polyphenols as adjuvant of oxytetracycline on Vibrio parahaemolyticus and enhancement of Vibriosis resistance of Exopalaemon carinicauda."Aquac Res. 2021 Aug;52(8):3900-3910 79. [IF=3.638] Li Zhao et al.Fabrication and characterization of octenyl succinic anhydride modified pullulan micelles for encapsulating curcumin.Journal Of The Science Of Food And Agriculture.2021 Nov 22 80. [IF=7.658] Mingyue Zhou et al."Atomic zinc sites with hierarchical porous carbon for high-throughput chemical screening with high loading capacity and stability."Pharmacol Res. 2022 Mar;:106154 81. [IF=9.147] Yanhong Liu et al."Preparation and properties of biodegradable films made of cationic potato-peel starch and loaded with curcumin."Food Hydrocolloid. 2022 Sep;130:107690 82. [IF=4.35] Lijuan Chen et al."Study on the Preparation, Characterization, and Stability of Freeze-Dried Curcumin-Loaded Cochleates."Foods. 2022 Jan;11(5):710 83. [IF=10.435] Sun Weidong et al."Self-oxygenation mesoporous MnO2 nanoparticles with ultra-high drug loading capacity for targeted arteriosclerosis therapy."J Nanobiotechnol. 2022 Dec;20(1):1-17 84. [IF=4.617] Chen Xinru et al."Construction and evaluation of curcumin upconversion nanocarriers decorated with MnO2 for tumor photodynamic therapy."Drug Deliv Transl Re. 2022 Jan;:1-15 85. [IF=10.998] Shaoyi Cen et al."4D printing of a citrus pectin/β-CD Pickering emulsion: A study on temperature induced color transformation."Additive Manufacturing. 2022 Aug;56:102925 86. [IF=5.34] Dong Shao et al."Identification of the active compounds and functional mechanisms of Jinshui Huanxian formula in pulmonary fibrosis by integrating serum pharmacochemistry with network pharmacology."PHYTOMEDICINE. 2022 Jul;102:154177 87. [IF=6.953] Hexiang Xie et al."Chitosan/rice hydrolysate/curcumin composite film: Effect of chitosan molecular weight."INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES. 2022 Jun;210:53 88. [IF=4.105] Kai-Xin Wang et al."IRMOF-8-encapsulated curcumin as a biocompatible, sustained-release nano-preparation."APPLIED ORGANOMETALLIC CHEMISTRY |
微信搜索化工百科或扫描下方二维码,添加化工百科小程序,随时随地查信息!