氨基酸类药。氨基酸输液及氨基酸复合制剂的原料,作营养增补剂。治疗脊髓灰质炎和性核性脑炎、甲状腺机能亢进等症。亦用于制造二碘酪氨酸、二溴酪氨酸及L-多巴的原料。
人一天经口20g未见副作用。避光,密封保存。
中文名 | L-酪氨酸 |
英文名 | L-Tyrosine |
别名 | 酪氨酸 L-酪氨酸 L-β-对羟苯基-β-丙氨酸 (2S,3R)-2-氨基-3-对羟苯基丙酸 |
英文别名 | Tyr H-Tyr-OH NSC 9973 Tyrosine NSC 82624 L-Tyrosine p-Tyrosine tyrosine usp L-p-Tyrosine (S)-Tyrosine L-(-)-Tyrosine Tyrosine,L- (8CI) L-Tyrosine, Free Base L-Phenylalanine, 4-hydroxy- 3-(4-Hydroxyphenyl)-L-alanine L-tyrosine plant cell culture tested (-)-a-Amino-p-hydroxyhydrocinnamicacid L-tyrosine free base cell culture*tested (S)-a-Amino-4-hydroxybenzenepropanoicacid (S)-2-Amino-3-(4-hydroxyphenyl)propanoic acid (2S)-2-Amino-3-(4-hydroxyphenyl)propanoic acid Benzenepropanoic acid, a-amino-4-hydroxy-, (S)- Propanoic acid,2-amino-3-(4-hydroxyphenyl)-, (S)- |
CAS | 60-18-4 55520-40-6 |
EINECS | 200-460-4 |
化学式 | C9H11NO3 |
分子量 | 181.19 |
InChI | InChI=1/C9H11NO3/c10-8(9(12)13)5-6-1-3-7(11)4-2-6/h1-4,8,11H,5,10H2,(H,12,13)/t8-/m0/s1 |
InChIKey | OUYCCCASQSFEME-QMMMGPOBSA-N |
密度 | 1.34 |
熔点 | 290℃ |
沸点 | 314.29°C (rough estimate) |
比旋光度 | -11.65 ° (C=5,DIL HCL/H2O 50/50) |
闪点 | 176℃ |
水溶性 | 0.45 g/L (25℃) |
溶解度 | 难溶于水(0.04%, 25°C), 不溶于无水乙醇、乙醚和丙酮, 可溶于稀酸或稀碱。 |
折射率 | -12 ° (C=5, 1mol/L H |
酸度系数 | 2.2(at 25℃) |
PH值 | 6.5 (0.1g/l, H2O) |
存储条件 | Store below +30°C. |
稳定性 | 稳定。与强氧化剂、强还原剂不相容。 |
敏感性 | Sensitive to light |
外观 | 粉末 |
颜色 | White to Pale-brown |
Merck | 14,9839 |
BRN | 392441 |
物化性质 | 产品呈丝光细针状结晶或结晶性粉末。熔点≥300℃。342~344℃分解。在与烃类共存下则更易分解。密度1.456g/cm3。pK′12.20;pK′29.11;pK′310.07。旋光度-10.6º(c=4,在1mol/LHCl中);-13.2º(c=4,3mol/LNaOH中)。-12.3º±0.5º,-11.0º±0.5º(c=4,lmol/L HCl中)在水中溶解度(g/100ml):0.02(0℃);0.045(25℃);0.105(50℃);0.244(75℃);0.565(100℃)。易溶于碱水溶液。不溶于中性有机溶剂,如无水乙醇、乙醚、丙酮等。 |
MDL号 | MFCD00002606 |
危险品标志 | Xi - 刺激性物品 |
风险术语 | R36/37/38 - 刺激眼睛、呼吸系统和皮肤。 |
安全术语 | S26 - 不慎与眼睛接触后,请立即用大量清水冲洗并征求医生意见。 S36 - 穿戴适当的防护服。 |
WGK Germany | 3 |
RTECS | YP2275600 |
TSCA | Yes |
海关编号 | 29225000 |
上游原料 | 酪蛋白 工业盐酸 糖浆 蚕丝 |
下游产品 | DL-酪氨酸 3-碘-L-酪氨酸 |
参考资料 展开查看 | 1. 陆金兰 朱星宇 刘玲 等. 中药炮制辅料米醋的指纹图谱研究[J]. 南京中医药大学学报 2017 033(005):463-469. 2. 刘金凤 王亚如 孙志双 等. 人参丝瓜美白润肤霜的制备[J]. 山东化工 2019 048(002):13-15. 3. 张黄琴, 刘培, 钱大玮, et al. 基于多元功效成分的瓜蒌皮药材产地现代干燥加工方法研究[J]. 中草药, 2020, v.51;No.663(04):127-141. 4. 张楠,刘劲松,王国凯,郑娟,刘松照.柱前衍生化反相高效液相色谱法测定蝉蜕中3种氨基酸含量[J].安徽中医药大学学报,2017,36(02):80-83. 5. 杨野, 李佳莹, 张曼,等. 混菌发酵纳豆的工艺研究[J]. 中国酿造, 2019. 6. 赵文佳, 梁强, 尹忠平,等. 芡实酒糟酱油生产工艺的研究[J]. 食品科技, 2018, 43(12):310-318. 7. 阙斐, 黄涵年, 赵粼. 香蕉酵素发酵过程中的组分及抗氧化活性变化研究[J]. 食品工业科技, 2019, v.40;No.432(16):296-299+309. 8. 罗仓学, 宋雅芸, 邵明亮. 马铃薯渣发酵产活性蛋白饲料培养基优化[J]. 陕西科技大学学报, 2017, 35(003):127-131. 9. 宋雅芸, 罗仓学, 邵明亮. 马铃薯渣发酵生产活性蛋白饲料的研究[J]. 食品工业科技, 2016, 37(24):186-192. 10. 刘四杰 黄露 陈文文.1-乙基-3-甲基咪唑L-酒石酸盐修饰金纳米粒子的合成与应用[J].闽江学院学报 2015 36(05):109-114. 11. 黄露, 陈毅挺, 李艳霞,等. 手性离子液体修饰纳米金粒子用于酪氨酸对映体的手性识别[J]. 分析科学学报, 2016(3):381-384. 12. 刘东茹, 任亚梅, 伯继芳,等. 根皮苷及苹果幼果多酚对酪氨酸酶活性的抑制作用[J]. 现代食品科技, 2019, v.35;No.240(08):113-119. 13. 杨芳, 王艺涵, 袁辛锐,等. 银耳多糖醇沉级分对酪氨酸酶的抑制作用[J]. 食品工业, 2020, v.41;No.282(03):6-9. 14. 汤翠, 王明力, 赵婕,等. 高酸值薏米糠油脱酸技术及其活性研究[J]. 中国油脂, 2017, 42(003):18-23. 15. 王贺 曹文红 章超桦 等. UV-C辐照对凡纳滨对虾虾头主要内源酶酶学性质的影响[J]. 食品与发酵工业 2019 v.45;No.391(19):36-41. 16. 梁静静, 李大伟, 史瑞琴,等. 腐乳中产生物胺菌株的筛选鉴定及产生物胺能力评价[J]. 河北农业大学学报, 2019(3). 17. 徐翠翠, 孔浩, 郭庆梅,等. 瓜蒌瓤提取物对酪氨酸酶抑制作用的研究[J]. 四川农业大学学报, 2014(01):59-62. 18. 甘惠玉 黄露. L-脯氨酸修饰金纳米通道的制备及应用[J]. 闽江学院学报 2019 40(02):101-105. 19. 代莉莉, 金珊霞, 范梦莹,等. 季铵化β-环糊精接枝壳聚糖涂层用于毛细管电泳分离的研究[J]. 分析试验室, 2017, 08(v.36):15-18. 20. 陈思, 郜玉钢, 臧埔,等. 鹿角脱盘及其5种提取部位21种氨基酸含量对比分析[J]. 药物分析杂志, 2017(10):1851-1857. 21. 祝洪艳, 张荻, 张力娜,等. 柱前衍生化HPLC法检测紫苏子和紫苏叶中氨基酸的含量[J]. 药物分析杂志, 2017(10):1858-1864. 22. 郑丹妮,王梦颖,胡艺涵,刘良忠.双菌混合发酵纳豆工艺优化[J].食品与机械,2020,36(12):183-188. 23. 李丹,刘培,张黄琴,李卫文,严辉,尚尔鑫,魏丹丹,董玲,段金廒.不同产地不同品系瓜蒌皮中多类型资源性化学成分分析与品质评价研究[J].南京中医药大学学报,2020,36(05):607-614. 24. 乔亚丽,刘喆,沈爱金,郭志谋,刘艳芳,陈相银,徐青,梁鑫淼.穿山甲色谱指纹谱的建立及其在基源鉴别和质量等级区分方面的应用[J].色谱,2020,38(12):1440-1448. 25. Li, Dan, et al. "Colorimetric and Fluorescent Dual-Mode Measurement of Blood Glucose by Organic Silicon Nanodots." ACS Applied Nano Materials 3.11 (2020): 11600-11607.https://doi.org/10.1021/acsanm.0c02758 26. Wei, Yingliang, Anting Wang, and Lu Wang. "A Sensitive Electrochemical Sensor Based on Graphene/Pt Nanoparticles for Simultaneous Determination of Tyrosine and Tryptophan in the Presence of 5-hydroxytryptophan." INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCI 27. Li, Xinbao, et al. "Solubility of d-Tryptophan and l-Tyrosine in Several Organic Solvents: Determination and Solvent Effect." Journal of Chemical & Engineering Data 64.7 (2019): 3164-3169. https://doi.org/10.1021/acs.jced.9b00258 28. Sun, L., Chen, Y., Hou, C., Sun, X., Wang, Z., Li, S., ... & Chen, X. (2018). Neuroprotective effect of total glycosides from paeonies against neurotoxicity induced by strychnos alkaloids related to recovering the levels of neurotransmitters and neuroendoc 29. Wang, Man, et al. "3-Aminophenyl boronic acid functionalized quantum-dot-based ratiometric fluorescence sensor for the highly sensitive detection of tyrosinase activity." ACS sensors 5.6 (2020): 1634-1640.https://doi.org/10.1021/acssensors.0c00122 30. An, Jia, et al. "Carbon dots-based dual-emission ratiometric fluorescence sensor for dopamine detection." Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 243 (2020): 118804.https://doi.org/10.1016/j.saa.2020.118804 31. Sun, L., Chen, Y., Hou, C., Sun, X., Wang, Z., Li, S., ... & Chen, X. (2018). Neuroprotective effect of total glycosides from paeonies against neurotoxicity induced by strychnos alkaloids related to recovering the levels of neurotransmitters and neuroendoc 32. Wen, Zhiqi, et al. "Metabolomics and 16S rRNA Gene sequencing analyses of changes in the intestinal flora and biomarkers induced by gastrodia-uncaria treatment in a rat model of chronic migraine." Frontiers in pharmacology 10 (2019): 1425.https://doi.org/1 33. Dan Li, Yanxiao Jiang, Sihan Chen, Qingnan Zhao, Yue Zhang, Wei Wang, Ying Sun, Pinyi Ma, Daqian Song, Xinghua Wang,A simple and sensitive assay of alkaline phosphatase activity in serum by fluorescent silicon nanoparticles based on inner filter effect,S 34. Zhao, Zheng, et al. "Cholinium amino acids-glycerol mixtures: New class of solvents for pretreating wheat straw to facilitate enzymatic hydrolysis." Bioresource technology 245 (2017): 625-632.https://doi.org/10.1016/j.biortech.2017.08.209 35. Xiaokui Huo, Xiangge Tian, Yannan Li, Lei Feng, Yonglei Cui, Chao Wang, Jingnan Cui, Chengpeng Sun, Kexin Liu, Xiaochi Ma, A highly selective ratiometric fluorescent probe for real-time imaging of β-glucuronidase in living cells and zebrafish, Sensors and 36. [IF=7.46] Xiaokui Huo et al."A highly selective ratiometric fluorescent probe for real-time imaging of β-glucuronidase in living cells and zebrafish."Sensor Actuat B-Chem. 2018 Jun;262:508 37. [IF=5.923] Cuihua Chen et al."Variations in Physiology and Multiple Bioactive Constituents under Salt Stress Provide Insight into the Quality Evaluation of Apocyni Veneti Folium."Int J Mol Sci. 2018 Oct;19(10):3042 38. [IF=5.548] Wenli Liu et al."Assessment of the safety and applications of bacteriocinogenic Enterococcus faecium Y31 as an adjunct culture in North-eastern Chinese traditional fermentation paocai."Food Control. 2015 Apr;50:637 39. [IF=4.952] Fengfeng Qu et al."Effect of different drying methods on the sensory quality and chemical components of black tea."Lwt Food Sci Technol. 2019 Jan;99:112 40. [IF=4.411] Cuihua Chen et al."Quality Evaluation of Apocyni Veneti Folium from Different Habitats and Commercial Herbs Based on Simultaneous Determination of Multiple Bioactive Constituents Combined with Multivariate Statistical Analysis."Molecules. 2018 Mar;23(3):5 41. [IF=4.411] Yujiao Hua et al."Quality Evaluation of Pseudostellariae Radix Based on Simultaneous Determination of Multiple Bioactive Components Combined with Grey Relational Analysis."Molecules. 2017 Jan;22(1):13 42. [IF=4.098] Chunlin Li et al."Rapid and non-destructive discrimination of special-grade flat green tea using Near-infrared spectroscopy."Spectrochim Acta A. 2019 Jan;206:254 43. [IF=3.361] Linjia Sun et al."Neuroprotective effect of total glycosides from paeonies against neurotoxicity induced by strychnos alkaloids related to recovering the levels of neurotransmitters and neuroendocrine hormones in rat serum and brain."Rsc Adv. 2018 Aug;8(5 44. [IF=2.896] Ya-yun Chen et al."Determination of free amino acids and nucleosides and nucleobases in Annona squamosa L. fruitages from different regions in China by LC-QTRAP-MS/MS."Anal Methods-Uk. 2017 Jun;9(25):3862-3869 45. [IF=2.227] Zhang Jie et al."Preparation and characterization of L-phenylalanine modified chitosan resin for aromatic amino acid adsorption."Macromol Res. 2014 May;22(5):515-522 46. [IF=0.691] Lu Liping et al."Spectral analysis of interaction between carotenoid and tyrosine in ethanol-water solution."Russ J Phys Chem A+. 2015 Mar;89(3):417-422 47. [IF=11.413] Zhenhao Tian et al."A NIR fluorescent probe for Vanin-1 and its applications in imaging, kidney injury diagnosis, and the development of inhibitor."Acta Pharm Sin B. 2021 Jun;: 48. [IF=7.46] Yue Zhang et al."A dual-signal sensing platform based on nanosheet materials for ratiometric fluorescence and colorimetric detection of enzyme activities in human blood."Sensor Actuat B-Chem. 2021 Nov;346:130531 49. [IF=7.46] Dan Li et al."A simple and sensitive assay of alkaline phosphatase activity in serum by fluorescent silicon nanoparticles based on inner filter effect."Sensor Actuat B-Chem. 2020 Mar;307:127589 50. [IF=6.986] Xiangge Tian et al."Visual High-Throughput Screening for Developing a Fatty Acid Amide Hydrolase Natural Inhibitor Based on an Enzyme-Activated Fluorescent Probe."Anal Chem. 2020;92(14):9493–9500 51. [IF=6.785] Xiangge Tian et al."Endoplasmic Reticulum Targeting Ratiometric Fluorescent Probe for Carboxylesterase 2 Detection in Drug-Induced Acute Liver Injury."Anal Chem. 2019;91(24):15840–15845 52. [IF=6.057] Chenglong Sun et al."1,1′-binaphthyl-2,2′-diamine as a novel MALDI matrix to enhance the in situ imaging of metabolic heterogeneity in lung cancer."Talanta. 2020 Mar;209:120557 53. [IF=5.81] Wen Zhiqi et al."Metabolomics and 16S rRNA Gene Sequencing Analyses of Changes in the Intestinal Flora and Biomarkers Induced by Gastrodia-Uncaria Treatment in a Rat Model of Chronic Migraine."Front Pharmacol. 2019 Dec;0:1425 54. [IF=5.753] Li Qingzhu et al."Transcriptomic and Metabolomic Analyses Reveals That Exogenous Methyl Jasmonate Regulates Galanthamine Biosynthesis in Lycoris longituba Seedlings."Front Plant Sci. 2021 Sep;0:1933 55. [IF=5.537] Yurong Ma et al."Pre-cut NaCl solution treatment effectively inhibited the browning of fresh-cut potato by influencing polyphenol oxidase activity and several free amino acids contents."Postharvest Biol Tec. 2021 Aug;178:111543 56. [IF=4.952] Huan Zhang et al."Label-free quantification proteomics reveals the active peptides from protein degradation during anaerobic fermentation of tea."Lwt Food Sci Technol. 2021 Oct;150:111950 57. [IF=4.821] Peng Wan et al."Analysis of aroma-active compounds in bighead carp head soup and their influence on umami of a model soup."Microchem J. 2021 Sep;168:106436 58. [IF=4.556] Dandan Zhao et al."Physico-chemical properties and free amino acids profiles of six wolfberry cultivars in Zhongning."J Food Compos Anal. 2020 May;88:103460 59. [IF=4.466] Yao Tan et al."Multiomics Integrative Analysis for Discovering the Potential Mechanism of Dioscin against Hyperuricemia Mice."J Proteome Res. 2021;20(1):645–660 60. [IF=4.418] Yuan Li et al."Deciphering the Mechanism of the Anti-Hypertensive Effect of Isorhynchophylline by Targeting Neurotransmitters Metabolism of Hypothalamus in Spontaneously Hypertensive Rats."Acs Chem Neurosci. 2020;11(11):1563–1572 61. [IF=4.411] Mengxia Tan et al."Quality Evaluation of Ophiopogonis Radix from Two Different Producing Areas."Molecules. 2019 Jan;24(18):3220 62. [IF=4.411] Shengxin Yin et al."Comparison of Multiple Bioactive Constituents in the Corolla and Other Parts of Abelmoschus manihot."Molecules. 2021 Jan;26(7):1864 63. [IF=4.379] Feng Lin et al."Chemical profile changes during pile fermentation of Qingzhuan tea affect inhibition of α-amylase and lipase."Sci Rep-Uk. 2020 Feb;10(1):1-10 64. [IF=4.242] Mohammad Mizanur Rahman et al."Dietary threonine requirement of juvenile largemouth bass, Micropterus salmoides."Aquaculture. 2021 Oct;543:736884 65. [IF=4.204] Zhu Mingyue et al."A highly selective fluorescent probe for real-time imaging of UDP-glucuronosyltransferase 1A8 in living cells and tissues."Frontiers of Chemical Science and Engineering. 2021 Jun 29 66. [IF=4.142] Qu Fei et al."Ratiometric detection of alkaline phosphatase based on aggregation-induced emission enhancement."Anal Bioanal Chem. 2019 Nov;411(28):7431-7440 67. [IF=4.142] Li Dan et al."Sensitive ratiometric fluorescence assay for detecting xanthine in serum based on the inner filter effect of enzyme-catalyzed oxidation products to silicon nanoparticles."Anal Bioanal Chem. 2021 Feb;413(5):1405-1415 68. [IF=4.098] Chunlin Li et al."Discrimination of white teas produced from fresh leaves with different maturity by near-infrared spectroscopy."Spectrochim Acta A. 2020 Feb;227:117697 69. [IF=3.361] Ning Zhao et al."Ratiometric fluorescence probe of Cu2+ and biothiols by using carbon dots and copper nanoclusters."Rsc Adv. 2021 Oct;11(53):33662-33674 70. [IF=3.361] Furong Wang et al."Effect of free amino acids and peptide hydrolysates from sunflower seed protein on the formation of pyrazines under different heating conditions."Rsc Adv. 2021 Aug;11(45):27772-27781 71. [IF=3.361] Ruixue Yu et al."Targeted neurotransmitter metabolomics profiling of oleanolic acid in the treatment of spontaneously hypertensive rats."Rsc Adv. 2019 Jul;9(40):23276-23288 72. [IF=2.043] Guan Chengran et al."Variation of bitter components of the asparagus juices during lactic acid bacteria fermentation."Biosci Biotech Bioch. 2021 Oct;85(11):2300-2310 73. [IF=2.419] Shanshan Gao et al."Development and validation of a sensitive and reliable targeted metabolomics method for the quantification of cardiovascular disease-related biomarkers in plasma by using UPLC-MS/MS."Rapid Communications In Mass Spectrometry. 2022 Mar 74. [IF=4.242] Hang Yang et al."Dietary leucine requirement of juvenile largemouth bass (Micropterus salmoides) based on growth, nutrient utilization and growth-related gene analyses."Aquaculture. 2022 Jun;555:738207 75. [IF=4.142] Zhang Wei et al."Ratiometric fluorescence and colorimetric dual-mode sensing platform based on carbon dots for detecting copper(II) ions and D-penicillamine."Anal Bioanal Chem. 2022 Feb;414(4):1651-1662 76. [IF=7.514] YueTong Yu et al."Identification and Quantification of Oligomeric Proanthocyanidins, Alkaloids, and Flavonoids in Lotus Seeds: A Potentially Rich Source of Bioactive Compounds."Food Chem. 2022 Jan;:132124 77. [IF=4.411] Nan Wu et al."Quality Evaluation of Taxilli Herba from Different Hosts Based on Simultaneous Determination of Multiple Bioactive Constituents Combined with Multivariate Statistical Analysis."Molecules. 2021 Jan;26(24):7490 78. [IF=3.463] Xiaomei Dai et al."S-alk(en)ylcysteine sulfoxides biosynthesis and free amino acids profile in different parts of postharvest chive (Allium schoenoprasum L.)."SCIENTIA HORTICULTURAE. 2022 Sep;303:111191 79. [IF=3.935] Min Zhang et al."Chemical profile and miscarriage prevention evaluation of Jiao-ai decoction, a classical traditional Chinese formula."JOURNAL OF PHARMACEUTICAL AND BIOMEDICAL ANALYSIS. 2022 May;:114832 80. [IF=2.281] Zihui Ma et al."Studies on the biosynthetic pathways of melanin in Auricularia auricula."JOURNAL OF BASIC MICROBIOLOGY |
酪氨酸 (Tyrosine, 缩写为 Tyr or Y)或 4 - 羟基苯丙氨酸, 是细胞用来合成蛋白质的22种氨基酸之一,在细胞中可用于合成蛋白质,其密码子为UAC和UAU,属于含有极性侧基,人体可自行合成的非必需氨基酸。单词“酪氨酸”是来自希腊语 tyros,意思奶酪。19世纪初被德国的化学家尤斯图斯·冯·李比希首先在起司的酪蛋白中发现,当用作于官能基或侧基时则称做酪氨酰。
除了是一个蛋白质氨基酸,在蛋白质中的讯号传导过程中,酪氨酸凭借著酚官能基具有特殊作用,其功能为被蛋白激酶(所谓的酪氨酸激酶受体)信号转移的磷酸基的受器,而羟基的磷酸化改变的目标蛋白质的活性。
酪氨酸在光合作用中也扮演重要角色,在叶绿体(光系统II)中,在氧化叶绿素的还原反应中被当作电子提供者,使其进行酚醛OH-基团的去质子化,最后在光系统II中被四个核心锰簇还原。
酪氨酸可在体内由苯丙氨酸合成,可在许多高蛋白质食品如如鸡,火鸡,鱼,牛奶,酸奶,奶酪,干酪,花生,杏仁,南瓜子,芝麻,大豆,利马豆,鳄梨和香蕉中被发现。
在微生物或植物中,酪氨酸透过预苯酸(一种莽草酸反应途径产生的中间产物)产生,预苯酸被保留的羟基氧化脱羧得到对-羟基苯基丙酮酸,酪氨酸和α-酮戊二酸利用谷氨酸作为氮源进行氨基转移反应产生对-羟基苯基丙酮酸。
哺乳动物利用来自食物的必需氨基酸苯丙氨酸(PHE)来合成酪氨酸,苯丙胺酸转换成酪氨酸的反应由丙氨酸羟化酶(一种单氧化酶)催化而成,这种酶催化反应造成羟基和苯丙氨酸的6-碳环的芳香环端部的加成反应,使之变成酪氨酸。
某些酪氨酸可以用蛋白激酶的磷酸基标注,酪氨酸在磷酸化形式时被称作磷酸酪氨酸,酪氨酸磷酸化被认为是信号转导和酶活性调控中的关键步骤之一,磷酸酪氨酸可以被特定抗体所侦测,酪氨酸也可以被添加的硫酸基修饰,这个反应过程称为酪氨酸硫酸盐化。酪氨酸硫酸盐化是由酪氨酰蛋白质中的磺基转移酶(TPST)所催化而成,如同上面所提到的磷酸酪氨酸抗体,此抗体具有特异性可侦测到磺基酪氨酸。
在大脑中的多巴胺细胞中,酪氨酸被酶酪氨酸羟化酶(TH)转化成左旋多巴胺,酶酪氨酸羟化酶是一种具有速率限制酶,被使用于神经传递物质多巴胺的合成过程中,多巴胺可以被转化成儿茶酚胺去甲肾上腺素(去甲肾上腺素)和肾上腺素(肾上腺素)。
甲状腺激素三碘甲状腺氨酸 (T3)和在甲状腺胶体中的甲状腺素 (T4)也来自于酪氨酸。
就化学而言,肾上腺素是所谓儿茶酚胺的一组单胺之一。它从氨基酸苯丙氨酸和酪氨酸于中枢神经系统的一些神经元,及在肾上腺髓质的嗜铬细胞产生。
罂粟科催眠物质中的胶乳又称为罂粟,已被证实能将酪氨酸转换成生物碱吗啡,在其生物合成反应途径中,酪氨酸利用碳-14放射性标记的酪氨酸追踪体内合成路径。
三甲氧苯乙胺生产仙人掌生物合成酪氨酸。
酪氨酸解氨酶(TAL)是一种在天然酚生物合成反应途径中的酶,此酶将左旋酪氨酸转换成对香豆酸。
酪氨酸也是色素中的黑色素的前驱物。
酪氨酸分解成乙酰乙酸和富马酸。在分解过程中两个双加氧酶是必要物质,最终产物都会进入柠檬酸循环。
左旋酪氨酸(对-羟基苯丙氨酸)的分解作用,为酪氨酸转氨酶变成对-羟基苯基丙酮酸的α-酮戊二酸的依赖性转移反应而成,其结合位置为对位,缩写为p,表示苯环上的羟基和侧链是对面方位(见下图)。
下一步的氧化步骤中,由对-羟基苯基丙酮酸-双加氧酶和二氧化碳尿黑酸(2,5-二羟基苯基-1-乙酸乙酯)裂断催化而成,为了拆开尿黑酸的芳香环,通过氧分子进一步的结合以得到尿黑酸加氧酶是必须。
富马酰乙酸经由氧化的羟基所造成的羧基旋转,而产生maleylacetoacetate -顺式-反式异构酶。含有谷胱甘肽的顺-反异构酶作为辅酶,经由添加水分子,延胡索酰乙酰乙酸最终被延胡索酰乙酰乙酸水解酶给裂断。
富马酸盐(也是柠檬酸循环的代谢产物)和乙酰乙酸酯(3-丁酮酸)为游离状态,乙酰乙酸酯是一种酮,其被琥珀酰-CoA活化后可以被转化成乙酰-CoA,反过来又可被柠檬酸循环氧化或用于脂肪酸合成。
Phloretic酸也是大鼠中泌尿代谢物的酪氨酸。
氨基酸类药。氨基酸输液及氨基酸复合制剂的原料,作营养增补剂。治疗脊髓灰质炎和性核性脑炎、甲状腺机能亢进等症。亦用于制造二碘酪氨酸、二溴酪氨酸及L-多巴的原料。
一. 碱溶段
原料:三次母液(L-胱氨酸生产中三次中和段产物)
辅料:液碱,纯水,活性炭
将三次母液通入碱溶罐内,通(投)入液碱,纯水,活性炭,温度90,碱溶时间6h,过滤。
终点产物:1,滤渣(回收利用) 2,滤液(去一次中和段)
二,一次中和段
辅料:盐酸
滤液进入一次中和罐,通入盐酸,温度80,中和时间6h,终点PH=8.5,过滤。
终点产物:1,滤液(回收利用)2,滤渣(去脱色段)
三,脱色段
辅料:盐酸,蒸汽,纯水,活性炭
滤渣进入脱色罐,通(投)入盐酸,蒸汽,纯水,活性炭,温度80,脱色时间2h,终点ph=0.5,过滤。
终点产物:1,滤渣(回收利用) 2,滤液(去二次中和段)
四,二次中和段
辅料:氨水
滤液进入二次中和罐,通入氨水,温度80,中和时间4h,终点ph=4.0,结晶,过滤
终点产物:1,滤液(回收利用)2,滤渣(即L-酪氨酸粗品,去精制段)
五,精制段
辅料:蒸馏水,蒸汽
用蒸馏水冲洗上段工序产品并离心甩干,送入烘干机,通入蒸汽烘干,包装,入库,烘干温度100,气压-0.09Mpa,烘干时间5h。
终点产物:L-酪氨酸成品
人一天经口20g未见副作用。避光,密封保存。
皮肤白不白,主要取决于黑色素细胞合成黑色素的能力。在人的表皮基层细胞间,分布着黑色素细胞,它含有的酪氨酶可以将酪氨酸氧化成多糖,中间再经过一系列的代谢过程,最后便可生成黑色素。黑色素生成得多,皮肤就越黑;反之,则皮肤就越白皙。
研究证明,酪氨酸酶的活性与体内的铜、铁、锌等元素密切相关。经常进食富含酪氨酸和稀有元素锌、铜、铁的物质,例如动物内脏、肾,甲壳类动物蛤、蟹、河螺、牡蛎,水产品乌鱼子,豆类的大豆、扁豆、青豆、赤豆,硬壳果类花生、核桃、黑芝麻以及葡萄干等,皮肤的色泽就较黑。因此住在海边的人,打渔的渔民,由于吃以上水产品较多,因此皮肤色泽较黑。
微信搜索化工百科或扫描下方二维码,添加化工百科小程序,随时随地查信息!