中文名 | Α-葡糖苷酶 |
英文名 | α-Glucosidase |
别名 | Α-葡糖苷酶 A-葡萄糖苷酶 α-葡萄糖苷酶 Α-葡萄糖转苷酶 Α-D-葡萄糖苷酶 Α-葡(萄)糖苷酶 Α-多功能葡萄糖苷酶 |
英文别名 | MALTASE α-Glucosidase MALTASE TYPE V MALTASE TYPE I a-Glucosidase (EC 3.2.1.20) A-glucosidase type I from bakers yeast alpha-Glucosidase (from Yeast) 100kU pack β-D-Glucoside glycohydrolase (EC 3.2.1.21) A-glucosidase from bacillus*stearothermophilus ly A-GLUCOSIDASE SACCHAROMYCES CEREVISIAE, RECOMBINANT |
CAS | 9001-42-7 |
EINECS | 232-604-7 |
熔点 | 154.3-155.3 °C |
存储条件 | 2-8°C |
外观 | 粉末 |
颜色 | off-white |
物化性质 | 化学性质 澄清的琥珀色至暗棕色液体制剂,或为白色至浅棕黄色粉末。主要作用酶为α-淀粉酶(液化酶)和β-淀粉酶(麦芽糖化酶)。α-淀粉酶的主要作用是使淀粉、糖元之类多糖中的α-1,4-葡聚糖键水解而成糊精、低聚糖和单糖。β-淀粉酶的主要作用为使淀粉、糖元之类多糖中的α-1,4-葡聚糖键水解为β-极限糊精。 |
MDL号 | MFCD00081321 |
安全术语 | S22 - 切勿吸入粉尘。 S24/25 - 避免与皮肤和眼睛接触。 |
WGK Germany | 3 |
FLUKA BRAND F CODES | 3-10-21 |
上游原料 | 乳酸链球菌素 |
参考资料 展开查看 | 1. 刘富月 王晓东 李守鹏 李啸晨 刘军伟 唐晓珍.不同品种生姜提取物对α-葡萄糖苷酶的抑制作用[J].食品与发酵工业 2014 40(12):6-9. 2. 蔡乔宇 徐晓茹 周坚 等. 不同辅料添加量对挤压重组米的消化特性的影响[J]. 食品工业科技 2020(16):16-20. 3. 吴利苹 俞雅芮 刘梦影 等. 侧柏叶中的1个新苯丙素苷[J]. 中草药 2020 v.51;No.662(03):12-19. 4. 廖建春 刘丽君 王钱道. 加味五子衍宗合剂及其组分对生精细胞损伤模型大鼠MDA、SOD、α-葡糖苷酶、果糖的影响[J]. 江苏中医药 2018 50(004):81-83. 5. 余敏 黄晶晶 付瑞燕 等. 响应曲面法优化酶解豆粕蛋白制备降糖肽的工艺[J]. 食品工业科技 2018 039(006):108-113. 6. 霍揽明,郑新恒,陈芳,刘怡靖,周光雄.地骨皮水提取物的化学成分[J].暨南大学学报(自然科学与医学版),2017,38(05):443-449. 7. 戴卫波,李乐愚,梅全喜.复方番石榴制剂对HepG2细胞胰岛素抵抗的改善及对α-淀粉酶和α-葡萄糖苷酶抑制作用[J].中药新药与临床药理,2016,27(05):655-660. 8. 王彦平, 陈月英, 贾彦杰,等. 微波预处理-超声波辅助提取紫山药多糖及抑制α-葡萄糖苷酶活性研究[J]. 食品研究与开发, 2019, 40(14). 9. 于彩云[1], 赵莉莉[2], 张晶晶[1],等. 微生物来源的α-葡萄糖苷酶抑制剂高通量筛选模型的建立和初步应用[J]. 天然产物研究与开发, 2016(28):916-921. 10. 胡玉城, 王涛. 桑叶中不同质量控制指标与α-葡萄糖苷酶抑制活性相关性分析[J]. 辽宁中医药大学学报, 2019, v.21;No.188(12):51-54. 11. 公衍玲, 郭遥遥, 刘洋. 樱桃核乙醇提取物体外抗氧化及降糖降脂研究[J]. 青岛科技大学学报(自然科学版), 2017, 38(006):14-17. 12. 高金波, 胡北, 孙长海,等. 水溶性木犀草素的制备、溶解度测定及α-葡萄糖苷酶抑制作用的研究[J]. 中国药师, 2014(6期):904-907. 13. 樊瑞娜, 孙小明, 黄新异,等. 油橄榄叶提取物对糖代谢关键酶抑制作用及物质基础初步研究[J]. 中药材, 2017, 040(002):408-411. 14. 崔玲玲, 季德, 袁永亮,等. 知母酒炙前后指纹图谱的比较及对α-葡萄糖苷酶抑制作用的比较研究[J]. 海峡药学, 2016, 28(004):43-48. 15. 许子杨, 敬思群, 林映君,等. 石斛与粉葛体外体内降糖降脂协同作用研究[J]. 食品与机械, 2020(1):181-185. 16. 赵玉红, 马捷, 李佳启,等. 老山芹不同溶剂提取物的活性成分及其促进细胞生长活性[J]. 现代食品科技, 2018(6). 17. 赵玉红, 李佳启, 马捷,等. 老山芹降血糖功能成分提取及活性研究[J]. 食品工业科技, 2018, 39(16):183-188+213. 18. 高航, 单雪玉, 高延芬,等. 莲子红衣多酚对a-葡萄糖苷酶的抑制作用[J]. 食品科学技术学报, 2016, 34(006):P.36-40,45. 19. 王羚佳, 舒晓梦, 辛文,等. 雅津蛋白桑多糖的分离纯化及生物活性研究[J]. 食品与机械, 2018, v.34;No.197(03):180-184+215. 20. 刘杰,向燕茹,丁嘉瑜,梁侨丽.青钱柳抑制α-葡萄糖苷酶有效成分筛选及其对Ⅱ型糖尿病小鼠血糖的影响[J].食品工业科技,2015,36(14):363-365+369. 21. 王胤康,吕萌,许琦,陈伟鸿,谭开祥,向极钎,刘卫.青钱柳活性成分对IR-HepG2细胞葡萄糖消耗量及α-葡萄糖苷酶活性的影响[J].食品与生物技术学报,2019,38(02):120-125. 22. 熊燕, 杜彩霞, 段玉书,等. 黔产景天三七的化学成分及药理活性研究[J]. 中草药, 2019, v.50;No.657(22):21-27. 23. 黄晓辰 马金魁 梁乐欣. 凤凰单枞多酚提取工艺优化及其体外抗氧化和α-葡萄糖苷酶抑制活性研究[J]. 食品工业科技 2020 v.41;No.449(09):94-100. 24. 杨文娟, 何亚娟, 毛跟年,等. 裂叶荨麻醇提物体外抗氧化及α-葡萄糖苷酶抑制作用的研究[J]. 食品研究与开发, 2020, 041(003):1-6. 25. 宋晓娟 卢晓莹 曾唯雅 等. 凉粉草不同极性部位抗氧化及对α-葡萄糖苷酶抑制作用研究[J]. 医药导报 2020 039(003):286-291. 26. 林海生 廖津 章超桦 等. 华贵栉孔扇贝酶法制备α-葡萄糖苷酶抑制肽工艺优化[J]. 广东海洋大学学报 2020(5):72-79. 27. 徐悦, 张卫明, 马世宏,等. 芫荽水提物的体外抗氧化活性和抑制α-葡萄糖苷酶作用的研究[J]. 中国调味品, 2018. 28. 郑丽屏 马燕军 张雨青. 一株桑树内生真菌的鉴定及菌丝多糖对α-葡萄糖苷酶活性的抑制作用[J]. 蚕业科学 2015 41(06):1062-1066. 29. 蒋彤,吕新林,李祥溦,李紫阳,杨丹,张子龙,朱晶晶,王智民,刘志高,刘继延.广枣皮果醋和苹果醋的功能成分、抗氧化及抑制α-葡萄糖苷酶活性比较研究[J].中国中药杂志,2020,45(05):1180-1187. 30. 贾亚楠, 逯海朋, 喻艳,等. 桑枝内生菌代谢产物抑制α-葡萄糖苷酶和抗氧化活性研究[J]. 食品与发酵工业, 2017, 43(011):132-139. 31. 陈玉青,严新,陈明军,林娈,杨成凤,李秋哲,刘斌,赵超.淡黑巨藻醇提取物降血糖活性及其对小鼠肠道菌群的影响[J].生物技术通报,2017,33(12):162-169. 32. 吴琼, 王明月, 吕岱竹,等. 紫皮豇豆多酚类物质的含量及其降糖活性研究[J]. 中国调味品, 2019, 044(010):59-62. 33. 王坤, 陈波, 桂略宁,等. 超声辅助提取省沽油多糖工艺的优化及生物活性比较[J]. 食品科技, 2018, 43(10):244-251. 34. 赵云韵, 杨心怡, 王申萌,等. 超声波协同高剪切法高效提取树莓果渣黄酮及其对α-葡萄糖苷酶的抑制作用[J]. 现代食品科技, 2019(5). 35. 杨文娟, 胡媛, 毛跟年,等. 裂叶荨麻体外降糖活性化学成分[J]. 食品工业科技, 2020, v.41;No.448(08):38-42. 36. 辛松林. 川秋葵微粉降血糖活性研究[C]// 第十三届中国西部营养与健康高峰论坛论文集. 2018. 37. 汤宇青, 吕峰, 林海兰,等. 石莼水溶性膳食纤维的理化性质及体外降血糖的活性[J]. 福建农林大学学报(自然科学版), 2017, 06(v.46):104-109. 38. 骆嘉原, 孙凯峰, 包怡红. 黑木耳多糖的酶法生物转化工艺优化及其体外降血糖性能[J]. 食品工业科技, 2019, v.40;No.437(21):209-215+236. 39. 汤陈鹏,吕峰,王蓉琳.孔石莼多糖锌结构表征与体外降血糖活性[J].食品科学,2020,41(07):52-58. 40. 张华峰, 王艺, 杨晓华,等. 滇黄精多糖的结构及对葡萄糖苷酶的抑制作用[J]. 精细化工, 2019, 36(4). 41. 符群, 李卉, 王路,等. 球磨法和均质法改善薇菜粉物化及功能性质[J]. 农业工程学报, 2018(9):285-291. 42. 余颖, 樊金玲, 程源斌,等. 甘草酸提取废液α-葡萄糖苷酶抑制剂的筛选与鉴定[J]. 食品科学, 2018, 39(13). 43. 羿月同, 张佳星, 贾铭杰,等. 降血糖代餐饼干的研制. 粮食与食品工业. 44. 王金斌, 李文, 张倩倩,等. 青稞慢消化淀粉酶法制备技术研究[J]. 核农学报, 2016, 30(011):2160-2170. 45. 包瑞敏, 张智, 杜亚飞,等. 黄精总皂苷提取工艺优化及其对α-淀粉酶及α-葡萄糖苷酶抑制活性[J]. 食品工业科技, 2020(16). 46. 熊文 吴婷 曹伟伟 等. 体外消化对藜蒿叶多酚含量及抗氧化活性的影响[J]. 现代食品科技 2020 v.36;No.245(01):84-89+293. 47. 曾桥 韦承伯 夏飞 李祥.响应面法优化超声波辅助提取杜仲叶茯砖茶绿原酸及其体外降血糖抗氧化活性[J].食品与发酵工业 2018 44(09):204-211. 48. 李云姣, 李琪, 杜佳峰,等. 水果酵素体外抗氧化及抑制α-淀粉酶和α-葡萄糖苷酶活性的研究[J]. 中国食品学报, 2019, 019(004):79-84. 49. 李霞,刘承鑫,黄艳,莫观兰,关媛.碱提西番莲叶多糖的分离、鉴定及生物活性[J].食品与机械,2021,37(03):137-143. 50. 蔡如玉. 茄皮中活性成分的提取、含片制备及降血糖作用初步研究[D].河北工程大学,2020. 51. 羿月同,张佳星,贾铭杰,王萍,赵玉红.降血糖代餐饼干的研制[J].粮食与食品工业,2020,27(04):39-45. 52. 赖晓桦,邓甜,胡经飞,陈德宁,吕明生,王淑军.米糠发酵产物抑制α-葡萄糖苷酶的工艺优化[J].食品工业科技,2021,42(04):128-134. 53. 陈骐,刘书渊,杨晓暾,万俊,徐媛媛,姚玥,郑好轸,葛立军.红色红曲霉Mr-1的次级代谢产物生物活性成分分析[J].微生物学通报,2021,48(03):787-796. 54. 刘荣,李晓东,毕文玥.减压耦合超声法提取桑叶脱氧野尻霉素及降血糖活性研究[J].中南林业科技大学学报,2021,41(01):168-179. 55. 郑丽婷,周鸿,刘奕明,林爱华.黄柏碱对α-葡萄糖苷酶的体外抑制作用[J].南京中医药大学学报,2020,36(06):853-858. 56. 唐敏,丁野,杨阳,谢孟乐,王淑敏,陈长宝,王欢,李玉.粗毛纤孔菌不同极性萃取物对α-葡萄糖苷酶的抑制作用及抗氧化活性研究[J].中国食用菌,2021,40(02):37-41+46. 57. Liu, Minzhuo, et al. "Comprehensive profiling of α-glucosidase inhibitors from the leaves of Rubus suavissimus using an off-line hyphenation of HSCCC, ultrafiltration HPLC-UV-MS and prep-HPLC." Journal of Food Composition and Analysis 85 (2020): 103336.htt 58. Qing-Qing Lv, Juan-Juan Cao, Rui Liu, Han-Qing Chen, Structural characterization, α-amylase and α-glucosidase inhibitory activities of polysaccharides from wheat bran, Food Chemistry, Volume 341, Part 1, 2021, 128218, ISSN 0308-8146, https://doi.org/10.101 59. Wang, Xiaowei, et al. "In vitro evaluation of the hypoglycemic properties of lactic acid bacteria and its fermentation adaptability in apple juice." LWT 136 (2021): 110363.https://doi.org/10.1016/j.lwt.2020.110363 60. Yang, Dan, et al. "Antioxidant and α-glucosidase inhibitory activities guided isolation and identification of components from mango seed kernel." Oxidative medicine and cellular longevity 2020 (2020).https://doi.org/10.1155/2020/8858578 61. Bao, Yi-Hong, Kai-Feng Sun, and Yang Guo. "Effect of molecular weight on hypolipidemic and hypoglycemic activities of fermented Auriculaia auricula supernatant." Food Science and Technology 40 (2020): 106-112.https://doi.org/10.1590/fst.00519 62. Xuemei Guo, Piaopiao Long, Qilu Meng, Chi-Tang Ho, Liang Zhang,An emerging strategy for evaluating the grades of Keemun black tea by combinatory liquid chromatography-Orbitrap mass spectrometry-based untargeted metabolomics and inhibition effects on α-glu 63. Xuemei Guo, Piaopiao Long, Qilu Meng, Chi-Tang Ho, Liang Zhang,An emerging strategy for evaluating the grades of Keemun black tea by combinatory liquid chromatography-Orbitrap mass spectrometry-based untargeted metabolomics and inhibition effects on α-glu 64. Liang Li, Yue Su, Yu Feng, Rui Hong, A comparison study on digestion, anti-inflammatory and functional properties of polysaccharides from four Auricularia species, International Journal of Biological Macromolecules, Volume 154, 2020, Pages 1074-1081, ISSN 65. Yang Zhang, Mingchun Wen, Pan Zhou, Maolin Tian, Jie Zhou, Liang Zhang,Analysis of chemical composition in Chinese olive leaf tea by UHPLC-DAD-Q-TOF-MS/MS and GC–MS and its lipid-lowering effects on the obese mice induced by high-fat diet,Food Research I 66. Hou, Xiaorong, et al. "Development of an immobilized liposome chromatography method for screening and characterizing α-glucosidase-binding compounds." Journal of Chromatography B 1148 (2020): 122097.https://doi.org/10.1016/j.jchromb.2020.122097 67. [IF=7.514] Xuemei Guo et al."An emerging strategy for evaluating the grades of Keemun black tea by combinatory liquid chromatography-Orbitrap mass spectrometry-based untargeted metabolomics and inhibition effects on α-glucosidase and α-amylase."Food Chem. 2018 Apr;2 68. [IF=5.396] Jie Zhou et al."Roasting improves the hypoglycemic effects of a large-leaf yellow tea infusion by enhancing the levels of epimerized catechins that inhibit α-glucosidase."Food Funct. 2018 Oct;9(10):5162-5168 69. [IF=5.396] Bo Chen et al."The chemical profiling of loquat leaf extract by HPLC-DAD-ESI-MS and its effects on hyperlipidemia and hyperglycemia in rats induced by a high-fat and fructose diet."Food Funct. 2017 Feb;8(2):687-694 70. [IF=5.275] Ling-Ling Zhang et al."The mechanism of interactions between flavan-3-ols against a-glucosidase and their in vivo antihyperglycemic effects."Bioorg Chem. 2019 Apr;85:364 71. [IF=5.118] Shan-Shan Zhang et al."Two Novel Multi-Functional Peptides from Meat and Visceral Mass of Marine Snail Neptunea arthritica cumingii and Their Activities In Vitro and In Vivo."Mar Drugs. 2018 Dec;16(12):473 72. [IF=4.451] Jianzhong Zhu et al."In-vitro inhibitory effects of flavonoids in Rosa roxburghii and R. sterilis fruits on α-glucosidase: Effect of stomach digestion on flavonoids alone and in combination with acarbose."J Funct Foods. 2019 Mar;54:13 73. [IF=3.591] Kang Qian et al."Synthesis of α-glycosidase hybrid nano-flowers and their application for enriching and screening α-glycosidase inhibitors."New J Chem. 2017 Dec;42(1):429-436 74. [IF=3.225] Wenhao Xu et al."Mechanochemical preparation of kaempferol intermolecular complexes for enhancing the solubility and bioavailability."Drug Dev Ind Pharm. 2018;44(12):1924-1932 75. [IF=2.863] Ke Cheng et al."Evaluation of the impact of different drying methods on the phenolic compounds, antioxidant activity, and in vitro digestion of green coffee beans."Food Sci Nutr. 2019 Mar;7(3):1084-1095 76. [IF=7.514] Yuan Hong et al."Screening and characterization of potential α-glucosidase inhibitors from Cercis chinensis Bunge fruits using ultrafiltration coupled with HPLC-ESI-MS/MS."Food Chem. 2022 Mar;372:131316 77. [IF=7.514] Qing-Qing Lv et al."Structural characterization, α-amylase and α-glucosidase inhibitory activities of polysaccharides from wheat bran."Food Chem. 2021 Mar;341:128218 78. [IF=7.514] Yuyang Zhang et al."Inhibitory effect of chestnut (Castanea mollissima Blume) inner skin extract on the activity of α-amylase, α-glucosidase, dipeptidyl peptidase IV and in vitro digestibility of starches."Food Chem. 2020 Sep;324:126847 79. [IF=7.46] Jie Mei et al."Novel dual-emissive fluorescent silicon nanoparticles for detection of enzyme activity in supplements associated with lactose intolerance."Sensor Actuat B-Chem. 2021 Feb;329:129164 80. [IF=6.953] Liang Li et al."A comparison study on digestion, anti-inflammatory and functional properties of polysaccharides from four Auricularia species."Int J Biol Macromol. 2020 Jul;154:1074 81. [IF=6.953] Yi-Meng Li et al."Structural characterization, anticancer, hypoglycemia and immune activities of polysaccharides from Russula virescens."Int J Biol Macromol. 2021 Aug;184:380 82. [IF=6.953] Zhenglei Yang et al."Influence of moisture and amylose on the physicochemical properties of rice starch during heat treatment."Int J Biol Macromol. 2021 Jan;168:656 83. [IF=6.543] Yang Dan et al."Antioxidant and α-Glucosidase Inhibitory Activities Guided Isolation and Identification of Components from Mango Seed Kernel."Oxid Med Cell Longev. 2020;2020:8858578 84. [IF=6.475] Yang Zhang et al."Analysis of chemical composition in Chinese olive leaf tea by UHPLC-DAD-Q-TOF-MS/MS and GC–MS and its lipid-lowering effects on the obese mice induced by high-fat diet."Food Res Int. 2020 Feb;128:108785 85. [IF=5.396] Xingliang Xiang et al."Potential hypoglycemic metabolites in dark tea fermented by Eurotium cristatum based on UPLC-QTOF-MS/MS combining global metabolomic and spectrum–effect relationship analyses."Food Funct. 2021 Aug;12(16):7546-7556 86. [IF=5.396] Xiangquan Zeng et al."Preparation, characterization and in vitro hypoglycemic activity of banana condensed tannin–inulin conjugate."Food Funct. 2020 Sep;11(9):7973-7986 87. [IF=5.275] Shao-Dan Chen et al."Inhibitory effect of triterpenoids from the mushroom Inonotus obliquus against α-glucosidase and their interaction: Inhibition kinetics and molecular stimulations."Bioorg Chem. 2021 Oct;115:105276 88. [IF=5.275] Jian-Qi Xiao et al."Bioactivity-based analysis and chemical characterization of hypoglycemic and antioxidant components from Artemisia argyi."Bioorg Chem. 2019 Nov;92:103268 89. [IF=4.952] Zhenglei Yang et al."The role of drying methods in determining the in vitro digestibility of starch in whole chestnut flour."Lwt Food Sci Technol. 2022 Jan;153:112583 90. [IF=4.952] Hong Chen et al."Comparative study on the structure, physicochemical, and functional properties of dietary fiber extracts from quinoa and wheat."Lwt Food Sci Technol. 2021 Sep;149:111816 91. [IF=4.556] Minzhuo Liu et al."Comprehensive profiling of α-glucosidase inhibitors from the leaves of Rubus suavissimus using an off-line hyphenation of HSCCC, ultrafiltration HPLC-UV-MS and prep-HPLC."J Food Compos Anal. 2020 Jan;85:103336 92. [IF=4.451] Zhenfeng Huang et al."Bioaccessibility, safety, and antidiabetic effect of phenolic-rich extract from fermented Psidium guajava Linn. leaves."J Funct Foods. 2021 Nov;86:104723 93. [IF=4.411] Zhou Xu et al."Chemical Composition, Antioxidant and Antihyperglycemic Activities of the Wild Lactarius deliciosus from China."Molecules. 2019 Jan;24(7):1357 94. [IF=4.39] Xucan Yuan et al."Redox-induced target-dependent ratiometric fluorescence sensing strategy and logic gate operation for detection of α-glucosidase activity and its inhibitor."Dalton T. 2021 Jul;50(27):9426-9437 95. [IF=4.36] Yajie Wang et al."Chrysophyllum cainito. L alleviates diabetic and complications by playing antioxidant, antiglycation, hypoglycemic roles and the chemical profile analysis."J Ethnopharmacol. 2021 Dec;281:114569 96. [IF=4.35] Jiangxiong Zhu et al."Valorization of Polysaccharides Obtained from Dark Tea: Preparation, Physicochemical, Antioxidant, and Hypoglycemic Properties."Foods. 2021 Oct;10(10):2276 97. [IF=4.24] Jinjin Zhao et al."Identification of antidiabetic components from Cyclocarya paliurus."Food Biosci. 2021 Dec;44:101429 98. [IF=4.24] Mingxia Wu et al."Inhibitory effects of acorn (Quercus variabilis Blume) kernel-derived polyphenols on the activities of α-amylase, α-glucosidase, and dipeptidyl peptidase IV."Food Biosci. 2021 Oct;43:101224 99. [IF=4.006] Xiaowei Wang et al."In vitro evaluation of the hypoglycemic properties of lactic acid bacteria and its fermentation adaptability in apple juice."Lwt Food Sci Technol. 2021 Jan;136:110363 100. [IF=3.757] Lingling Liu et al."Novel peptides with α-glucosidase inhibitory activity from Changii Radix hydrolysates."Process Biochem. 2021 Dec;111:200 101. [IF=3.616] Meng Zhang et al."Comparative evaluation on phenolic profiles, antioxidant properties and α-glucosidase inhibitory effects of different milling fractions of foxtail millet."J Cereal Sci. 2021 May;99:103217 102. [IF=3.493] Min Lu et al."Preparation of phytic acid modified α-Glucosidase/Cu3(PO4)2·3H2O hybrid nanoflower and its application."Enzyme Microb Tech. 2021 May;146:109776 103. [IF=3.373] Minzhuo Liu et al."Separation of α-glucosidase inhibitors from Potentilla kleiniana Wight et Arn using solvent and flow-rate gradient high-speed counter-current chromatography target-guided by ultrafiltration HPLC-MS screening."Phytochem Analysis. 2019 No 104. [IF=2.863] Chang Zhou et al."Antioxidant and α-glucosidase inhibitory capacity of nonextractable polyphenols in Mopan persimmon."Food Sci Nutr. 2020 Oct;8(10):5729-5737 105. [IF=2.861] Xu Chen et al."A new quinic acid derivative with α-glucosidase inhibitory activity from the fruit of Gardenia jasminoides J.Ellis."Natural Product Research. 2021 Jun 08 106. [IF=2.431] Xie Zhike et al."Inhibitory kinetics and mechanism of oleanolic acid on α-glucosidase."J Food Meas Charact. 2021 Aug;15(4):3408-3418 107. [IF=2.352] Luo Ting et al."Phytochemical composition and potential biological activities assessment of raspberry leaf extracts from nine different raspberry species and raspberry leaf tea."J Berry Res. 2020 Jan;10(2):295-309 108. [IF=2.19] Qiaoran Zheng et al."The effect of storage time on tea Polyphenols, catechin compounds, total flavones and the biological activity of Ya’an Tibetan tea (Camellia sinensis)."Journal Of Food Processing And Preservation. 2021 Oct 11 109. [IF=6.576] Hui-qing Wu et al.Sequential Extraction, Characterization, and Analysis of Pumpkin Polysaccharides for Their Hypoglycemic Activities and Effects on Gut Microbiota in Mice.Front Nutr. 2021; 8: 769181 110. [IF=4.952] Min Xiong et al.The difference among structure, physicochemical and functional properties of dietary fiber extracted from triticale and hull-less barley.Lwt Food Sci Technol. 2022 Jan;154:112771 111. [IF=1.618] Li Pengchegn et al."Rapid Isolation and Hypoglycemic Activity of Secondary Metabolites of Eurotium cristatum by High-Speed Countercurrent Chromatography."J Chromatogr Sci. 2022 Mar;: 112. [IF=4.35] Mohe He et al."Effects of Endogenous Non-Starch Nutrients in Acorn (Quercus wutaishanica Blume) Kernels on the Physicochemical Properties and In Vitro Digestibility of Starch."Foods. 2022 Jan;11(6):825 113. [IF=3.361] Shuncheng Ren et al."Influence of gardenia yellow on in vitro slow starch digestion and its action mechanism."Rsc Adv. 2022 Feb;12(11):6738-6747 114. [IF=4.36] Kun Zhang et al."Antidiabetic potential of Catechu via assays for α-glucosidase, α-amylase, and glucose uptake in adipocytes."J Ethnopharmacol. 2022 Feb;:115118 115. [IF=5.396] Ming Zhou et al."Screening and identification of a novel antidiabetic peptide from collagen hydrolysates of Chinese giant salamander skin: network pharmacology, inhibition kinetics and protection of IR-HepG2 cells."Food Funct. 2022 Feb;: 116. [IF=6.576] Mei Yang et al."Chemical Variation of Chenpi (Citrus Peels) and Corresponding Correlated Bioactive Compounds by LC-MS Metabolomics and Multibioassay Analysis."Front Nutr. 2022; 9: 825381 117. [IF=1.965] Yang Xiao-Tong et al."Synthesis and biological evaluation of (20S,24R)-epoxy-dammarane-3β,12β,25-triol derivatives as α-glucosidase and PTP1B inhibitors."Med Chem Res. 2022 Feb;31(2):350-367 118. [IF=4.24] Pei Yang et al."Biotransformation of quinoa phenolic compounds with Monascus anka to enhance the antioxidant capacity and digestive enzyme inhibitory activity."Food Biosci. 2022 Apr;46:101568 119. [IF=4.35] Jiaqi Wang et al."Research on the Consumption Trend, Nutritional Value, Biological Activity Evaluation, and Sensory Properties of Mini Fruits and Vegetables."Foods. 2021 Dec;10(12):2966 120. [IF=5.279] Weiwei Liu et al."Molecular Mechanism for the α-Glucosidase Inhibitory Effect of Wheat Germ Peptides."J Agr Food Chem. 2021;XXXX(XXX):XXX-XXX 121. [IF=5.279] Zhi-Wei Hou et al."α-Glucosidase Inhibitory Activities and the Interaction Mechanism of Novel Spiro-Flavoalkaloids from YingDe Green Tea."J Agr Food Chem. 2022;70(1):136–148 122. [IF=5.396] Ming He et al."Inhibition of α-glucosidase by trilobatin and its mechanism: kinetics, interaction mechanism and molecular docking."Food Funct. 2021 Dec;: 123. [IF=2.408] Xiaonan Zhang et al."Chemical Composition, Antibacterial, Antioxidant and Enzyme Inhibitory Activities of the Essential Oil from Leaves of Psidium guajava L.."CHEMISTRY & BIODIVERSITY. 2022 Apr 12 124. [IF=4.35] Xian-Tao Yan et al."In Vitro Anti-Obesity Effect of Shenheling Extract (SHLE) Fermented with Lactobacillus fermentum grx08."Foods. 2022 Jan;11(9):1221 125. [IF=4.412] Hanlei Wang et al."Antioxidant, Hypoglycemic and Molecular Docking Studies of Methanolic Extract, Fractions and Isolated Compounds from Aerial Parts of Cymbopogon citratus (DC.) Stapf."MOLECULES. 2022 Jan;27(9):2858 126. [IF=5.396] Xiaojie Cheng et al."The compound enzymatic hydrolysate of Neoporphyra haitanensis improved hyperglycemia and regulated the gut microbiome in high-fat diet-fed mice."Food & Function. 2022 May;: 127. [IF=4.24] Zhaolin Song et al."Effects of non-starch polysaccharides from pure wheat malt beer on beer quality, in vitro antioxidant, prebiotics, hypoglycemic and hypolipidemic properties."Food Bioscience. 2022 May;:101780 128. [IF=3.366] Sun Luping et al."Analysis and Bioactivity of Volatile Oil from Cydonia oblonga Fruit by GC–MS."Food Analytical Methods. 2022 May;:1-9 129. [IF=3.196] Yangyang Fan et al."Inhibitory interaction of narcissoside on α-glucosidase from Aspergillus niger and Saccharomyces cerevisiae by spectral analysis and molecular docking."JOURNAL OF MOLECULAR STRUCTURE. 2022 Sep;1264:133262 注意:部分产品我司仅能提供部分信息,我司不保证所提供信息的权威性,仅供客户参考交流研究之用。 储存条件: -20℃ 4、溶液不要冷冻,解冻过程对酶活损失影响很大。 3、溶液不要在室外放置太久,最好一直置于2-8度环境下; 2、不要用纯水溶解,用PH7.0 200mM PBS缓冲盐溶液; 1、母液浓度尽量大于100u/ml,分装保存; |
微信搜索化工百科或扫描下方二维码,添加化工百科小程序,随时随地查信息!