中文名 | 黄嘌呤氧化酶 |
英文名 | xanthine oxidase from buttermilk |
别名 | 嘌呤氧化酶 黄嘌呤氧化酶 黄嘌呤氧化酶(全脂奶) 黄嘌呤氧化酶(XOD) 黄嘌呤氧化酶(+4℃) XANTHIONE OXIDASE 黄嘌呤氧化酶 |
英文别名 | XOD EC 1.1.3.22 e.c.1.2.3.2 xanthine-oxidas schardingerenzyme xanthineoxidoreductase Xanthine Oxidase, Bovine Milk hypoxanthineandxanthineoxidase xanthineoxidaseandhypoxanthine xanthine oxidase from buttermilk xanthine oxidase from microorganism xanthine oxidase grade I from*buttermilk |
CAS | 9002-17-9 |
EINECS | 232-657-6 |
化学式 | N/A |
存储条件 | 2-8°C |
外观 | 粉末 |
颜色 | brown |
物化性质 | 近似黄色液体 |
MDL号 | MFCD00082145 |
安全术语 | 24/25 - 避免与皮肤和眼睛接触。 |
WGK Germany | 3 |
RTECS | RQ8455000 |
FLUKA BRAND F CODES | 10 |
海关编号 | 35079090 |
上游原料 | 胰蛋白酶 |
参考资料 展开查看 | 1. 奚春蕊, 包海蓉, 刘琴,等. 基于金枪鱼K值变化的MTT快速传感器的研究及响应面设计[J]. 食品工业科技, 2013, 034(012):131-136. 2. 陈林林, 李伟, 韩可,等. 柠檬叶精油的抗氧化活性及其相关性分析[J]. 中国调味品, 2019, 44(03):52-56. 3. 王静莹, 薄海波, 吉生军,等. 高效液相色谱法快速测定青海牛羊肉和内脏组分中尿酸和嘌呤[J]. 肉类研究, 2017, 31(005):40-45. 4. 马倩, 赵品成, 卢永昌. 木藤蓼不同提取部位抑制黄嘌呤氧化酶活性研究[J]. 中国民族民间医药, 2020(15). 5. 李晶,刘雯,陈超,虞金宝.车前三个不同部位中主要化学成分含量差异及其黄嘌呤氧化酶体外抑制作用比较[J].实用中西医结合临床,2018,18(07):174-176. 6. 于俊俊, 徐德平. 枳椇子降尿酸功效成分[J]. 食品科技, 2019, v.44;No.337(11):234-238+244. 7. 邓宝琴, 邹峥嵘. 无患子总皂苷的还原法脱色工艺研究[J]. 江西师范大学学报(自然科学版), 2019, 43(01):94-99. 8. 杨静文,刘泽畅,陈培,杜伟栋,范效兰,石铭,刘玉梅.啤酒花中不同比例β-酸同系物的抗氧化及抑菌活性[J].食品科学,2020,41(23):83-90. 9. 王垚. 具有潜在降尿酸能力乳酸菌的筛选及应用研究[D].扬州大学,2021. 10. 钟英英,周佳明,叶美凤,何湘惠,邢韩寒,叶云.辣木叶提取物对黄嘌呤氧化酶活性的抑制[J].食品工业,2020,41(11):55-58. 11. 马倩,赵品成,卢永昌.木藤蓼不同提取部位抑制黄嘌呤氧化酶活性研究[J].中国民族民间医药,2020,29(15):16-20. 12. Zhang, Zhen, et al. "Mitochondria-accessing ratiometric fluorescent probe for imaging endogenous superoxide anion in live cells and Daphnia magna." ACS sensors 3.3 (2018): 735-741.http://pubs.acs.org/page/copyright/permissions.html. 13. Pang, Minxia, et al. "Gypenosides inhibits xanthine oxidoreductase and ameliorates urate excretion in hyperuricemic rats induced by high cholesterol and high fat food (lipid emulsion)." Medical science monitor: international medical journal of experimental 14. Liu, Yongjie, et al. "Inhibition and molecular mechanism of diosmetin against xanthine oxidase by multiple spectroscopies and molecular docking." New Journal of Chemistry 44.17 (2020): 6799-6809.https://doi.org/10.1039/D0NJ00679C 15. Wu, Zhao‐Yu, et al. "Evaluation of xanthine oxidase inhibitory activity of flavonoids by an online capillary electrophoresis‐based immobilized enzyme microreactor." Electrophoresis 41.15 (2020): 1326-1332.https://doi.org/10.1002/elps.202000083 16. Lu, Qiaoyun, et al. "Dual-emission reverse change ratio photoluminescence sensor based on a probe of nitrogen-doped Ti3C2 quantum dots@ DAP to detect H2O2 and xanthine." Analytical chemistry 92.11 (2020): 7770-7777.https://doi.org/10.1021/acs.analchem.0c00 17. Li, Wenying, et al. "Co 3 O 4 nanocrystals as an efficient catalase mimic for the colorimetric detection of glutathione." Journal of Materials Chemistry B 6.42 (2018): 6858-6864.https://doi.org/10.1039/C8TB01948G 18. Xu, Lian-Hua, et al. "ATMP-induced three-dimensional conductive polymer hydrogel scaffold for a novel enhanced solid-state electrochemiluminescence biosensor." Biosensors and Bioelectronics 143 (2019): 111601.https://doi.org/10.1016/j.bios.2019.111601 19. Ma, Yunsu, et al. "A ratiometric fluorescence universal platform based on N, Cu codoped carbon dots to detect metabolites participating in H2O2-generation reactions." ACS applied materials & interfaces 9.38 (2017): 33011-33019.https://doi.org/10.1021/acsam 20. Zhuang X-C, Chen G-L, Liu Y, Zhang Y-L, Guo M-Q. New Lignanamides with Antioxidant and Anti-Inflammatory Activities Screened Out and Identified from Warburgia ugandensis Combining Affinity Ultrafiltration LC-MS with SOD and XOD Enzymes. Antioxidants. 2021; 21. [IF=10.618] Zonghua Wang et al."Multiple signal amplification electrogenerated chemiluminescence biosensors for sensitive protein kinase activity analysis and inhibition."Biosens Bioelectron. 2015 Jun;68:771 22. [IF=9.229] Yunsu Ma et al."A Ratiometric Fluorescence Universal Platform Based on N, Cu Codoped Carbon Dots to Detect Metabolites Participating in H2O2-Generation Reactions."Acs Appl Mater Inter. 2017;9(38):33011–33019 23. [IF=7.711] Zhen Zhang et al."Mitochondria-Accessing Ratiometric Fluorescent Probe for Imaging Endogenous Superoxide Anion in Live Cells and Daphnia magna."Acs Sensors. 2018;3(3):735–741 24. [IF=6.986] Yue Zhao et al."Detection of Various Biomarkers and Enzymes via a Nanocluster-Based Fluorescence Turn-on Sensing Platform."Anal Chem. 2018;90(24):14578–14585 25. [IF=6.331] Wenying Li et al."Co3O4 nanocrystals as an efficient catalase mimic for the colorimetric detection of glutathione."J Mater Chem B. 2018 Oct;6(42):6858-6864 26. [IF=3.218] Zhuhai Chen et al."Highly sensitive electrogenerated chemiluminescence biosensor for galactosyltransferase activity and inhibition detection using gold nanorod and enzymatic dual signal amplification."J Electroanal Chem. 2016 Nov;781:83 27. [IF=13.273] Yuxiang Sun et al."Coronal relay reactor Fe3O4@CeO2 for accelerating ROS axial conversion through enhanced Enzyme-like effect and relay effect."Chem Eng J. 2022 Feb;429:132303 28. [IF=13.273] Peili Li et al."Low-drug resistance carbon quantum dots decorated injectable self-healing hydrogel with potent antibiofilm property and cutaneous wound healing."Chem Eng J. 2021 Jan;403:126387 29. [IF=10.618] Jiantao Ping et al."Hydrogel-assisted paper-based lateral flow sensor for the detection of trypsin in human serum."Biosens Bioelectron. 2021 Nov;192:113548 30. [IF=9.518] Lian-Hua Xu et al."ATMP-induced three-dimensional conductive polymer hydrogel scaffold for a novel enhanced solid-state electrochemiluminescence biosensor."Biosens Bioelectron. 2019 Oct;143:111601 31. [IF=6.986] Qiaoyun Lu et al."Dual-Emission Reverse Change Ratio Photoluminescence Sensor Based on a Probe of Nitrogen-Doped Ti3C2 Quantum Dots@DAP to Detect H2O2 and Xanthine."Anal Chem. 2020;92(11):7770–7777 32. [IF=6.312] Xiao-Cui Zhuang et al."New Lignanamides with Antioxidant and Anti-Inflammatory Activities Screened Out and Identified from Warburgia ugandensis Combining Affinity Ultrafiltration LC-MS with SOD and XOD Enzymes."Antioxidants-Basel. 2021 Mar;10(3):370 33. [IF=5.833] Liang Haixia et al."Carbon quantum Dot@Silver nanocomposite–based fluorescent imaging of intracellular superoxide anion."Microchim Acta. 2020 Sep;187(9):1-9 34. [IF=4.411] Xiaosheng Tang et al."Screening and Evaluation of Xanthine Oxidase Inhibitors from Gnetum parvifolium in China."Molecules. 2019 Jan;24(14):2671 35. [IF=4.411] Cong-Peng Zhao et al."Evaluation of Enzyme Inhibitory Activity of Flavonoids by Polydopamine-Modified Hollow Fiber-Immobilized Xanthine Oxidase."Molecules. 2021 Jan;26(13):3931 36. [IF=4.219] Huilong Xiang et al."Network pharmacology and molecular docking analysis on molecular targets: Mechanisms of baicalin and baicalein against hyperuricemic nephropathy."Toxicol Appl Pharm. 2021 Aug;424:115594 37. [IF=3.591] Xin Wang et al."Colorimetric detection of hypoxanthine in aquatic products based on the enzyme mimic of cobalt-doped carbon nitride."New J Chem. 2021 Oct;45(39):18307-18314 38. [IF=3.535] Zhao-Yu Wu et al."Evaluation of xanthine oxidase inhibitory activity of flavonoids by an online capillary electrophoresis-based immobilized enzyme microreactor."Electrophoresis. 2020 Aug;41(15):1326-1332 39. [IF=3.361] Mengmeng Yuan et al."The interaction of dietary flavonoids with xanthine oxidase in vitro: molecular property-binding affinity relationship aspects."Rsc Adv. 2019 Apr;9(19):10781-10788 40. [IF=1.554] Lang Zhang et al."Screening and analysis of xanthine oxidase inhibitors in jute leaves and their protective effects against hydrogen peroxide-induced oxidative stress in cells."Open Chem. 2020 Jan;18(1):1481-1494 41. [IF=10.588] Huiwang Dai et al.Unveiling the role of cobalt species in the Co/N-C catalysts-induced peroxymonosulfate activation process.J Hazard Mater. 2021 Nov;:127784 42. [IF=6.312] Min-Xia Fan et al."Potential Antioxidative Components in Azadirachta indica Revealed by Bio-Affinity Ultrafiltration with SOD and XOD."Antioxidants-Basel. 2022 Apr;11(4):658 43. [IF=10.435] Xie Pei et al."Biodegradable MoSe2-polyvinylpyrrolidone nanoparticles with multi-enzyme activity for ameliorating acute pancreatitis."J Nanobiotechnol. 2022 Dec;20(1):1-18 44. [IF=4.616] Yiyin Zhang et al."Fe-Doped polydopamine nanoparticles with peroxidase-mimicking activity for the detection of hypoxanthine related to meat freshness."Analyst. 2022 Feb;: 45. [IF=9.594] Shan Chen et al."Plasmonic imaging the catalysis of single graphene sheets – The edge effect."Carbon. 2022 May;191:333 46. [IF=2.647] Wang Yujun et al."Zn–porphyrin metal–organic framework–based photoelectrochemical enzymatic biosensor for hypoxanthine."J Solid State Electr. 2022 Feb;26(2):565-572 47. [IF=7.711] Mei Zhao et al."Viscosity-Based Flow Sensor on Paper for Quantitative and Label-Free Detection of α-Amylase and Its Inhibitor."Acs Sensors. 2022;XXXX(XXX):XXX-XXX 48. [IF=4.35] Tingting Han et al."A Water-Dispersible Carboxylated Carbon Nitride Nanoparticles-Based Electrochemical Platform for Direct Reporting of Hydroxyl Radical in Meat."Foods. 2022 Jan;11(1):40 49. [IF=6.576] Rui Wang et al."Quality Characteristics and Inhibitory Xanthine Oxidase Potential of 21 Sour Cherry (Prunus Cerasus L.) Varieties Cultivated in China."Front Nutr. 2021; 8: 796294 50. [IF=6.843] Shuhan Jia et al."Dopamine-derived nanoparticles for the protection of irradiation-induced intestinal injury by maintaining intestinal homeostasis."Biomaterials Science. 2022 May;: 51. [IF=13.273] Liying Zhang et al."2D MoSe2@PVP nanosheets with multi-enzyme activity alleviate the acute pancreatitis via scavenging the reactive oxygen and nitrogen species."CHEMICAL ENGINEERING JOURNAL. 2022 Oct;446:136792 52. [IF=4.24] Jun Li et al."In vitro xanthine oxidase inhibitory properties of Flos Sophorae Immaturus and potential mechanisms."Food Biosci. 2022 Jun;47:101711 注意:部分产品我司仅能提供部分信息,我司不保证所提供信息的权威性,仅供客户参考交流研究之用。 储存条件: -20℃ 它是一种催化黄嘌呤、次黄嘌呤生成尿酸的酶,它常作工具酶。用于黄嘌呤、次黄嘌呤、肌苷、鸟嘌呤、鸟苷等的测定 微红色至褐色无定形粉末。能溶于水。微生物提取。主要抑制剂有Ag+,Hg2+,Cd2+及尿素、氰化物、磷酸根和氯离子,主要稳定剂有水杨酸盐、半胱氨酸、组胺和维尔烯酸盐。 Inhibitors: Ag ,Hg。 Thermal stability: < 55℃ (pH 7.5, 20min)。 pH Stability :6.0~9.5(30℃,16hr)。 Optimum temperature: 55℃。 Optimum pH: 7.0~ 7.5。 Michaelis constant: 1.4×10 M (Xanthine)。 |
微信搜索化工百科或扫描下方二维码,添加化工百科小程序,随时随地查信息!