中文名 | 人参皂甙 Rb3 |
英文名 | ginsenoside rb3 |
别名 | 红茶浸膏粉 人参皂苷Rb3 人参皂荚RB2 人参皂甙 Rb3 人参皂甙 RB3 人参皂苷 Rb3 人参皂苷RB3对照品, 人参皂苷RB3(标准品) 人参皂苷RB3(人参皂荚RB2 人参皂苷 RB3, 来源于人参 GINSENOSIDE RB3 人参皂甙 RB3 |
英文别名 | Gypenoside IV xylopyranosyl- ginsenoside rb3 Ginsenoside Rb3 GINSENOSIDE Rb3(SH) hydroxydammar-24-en-20-yl6-O-β-D- β-D-Glucopyranoside, (3β,12β)-3-[(2-O-β-D- glucopyranosyl)oxy)-12-hydroxydammar-24-en-20-yl6-o-beta-d-xylopyranosyl- [3β-[[2-O-(β-D-Glucopyranosyl)-β-D-glucopyranosyl]oxy]-12β-hydroxy-5α-dammar-24-en-20-yl]6-O-(β-D-xylopyranosyl)-β-D-glucopyranoside alpha-D-Glucopyranoside, (3-beta,12-beta)-3-((2-O-beta-D-glucopyranosyl-beta-D-glucopyranosyl)oxy)-12-hydroxydammar-24-en-20-yl 6-O-beta-D-xylopyranosyl- (1R,4E)-1-{(8xi,9xi,12α,13xi,14β)-3-[(2-O-β-D-glucopyranosyl-β-D-glucopyranosyl)oxy]-12-hydroxy-4,4,10,14-tetramethylgonan-17-yl}-1,5-dimethylhept-4-en-1-yl 6-O-β-D-xylopyranosyl-β-D-allopyranoside |
CAS | 68406-26-8 |
化学式 | C53H90O22 |
分子量 | 1079.27 |
InChI | InChI=1/C53H90O22/c1-8-23(2)10-9-15-53(7,75-48-44(67)40(63)38(61)31(72-48)22-69-46-42(65)35(58)28(57)21-68-46)25-13-16-52(6)24-11-12-32-50(3,4)33(14-17-51(32,5)26(24)18-27(56)34(25)52)73-49-45(41(64)37(60)30(20-55)71-49)74-47-43(66)39(62)36(59)29(19-54)70-47/h10,24-49,54-67H,8-9,11-22H2,1-7H3/b23-10+/t24?,25?,26?,27-,28+,29+,30+,31+,32?,33?,34?,35-,36+,37+,38+,39-,40+,41-,42+,43+,44+,45+,46-,47-,48-,49-,51+,52+,53+/m0/s1 |
密度 | 1.42±0.1 g/cm3(Predicted) |
熔点 | 193~195℃ |
沸点 | 1117.1±65.0 °C(Predicted) |
比旋光度 | (c, 1 in MeOH)+19.4 |
闪点 | 634.2°C |
蒸汽压 | 0mmHg at 25°C |
溶解度 | DMSO (微溶) 、甲醇 (微溶) 、吡啶 (微溶) |
折射率 | 1.621 |
酸度系数 | 12.85±0.70(Predicted) |
存储条件 | Sealed in dry,2-8°C |
稳定性 | 吸湿性 |
敏感性 | Easily absorbing moisture |
外观 | 整洁 |
颜色 | White |
物化性质 | 白色结晶粉末,可溶于甲醇、乙醇、DMSO等有机溶剂,来源于人参,绞股蓝。 |
MDL号 | MFCD10566396 |
体外研究 | Ginsenoside Rb3 (0.1-10 μM) is tested for inhibition of tumor necrosis factor-α (TNF)-induced nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) luciferase reporter activity using a human kidney 293T cell-based assay. Ginsenoside Rb3 shows the significant activity with an IC 50 of 8.2 μM. Ginsenoside Rb3 also inhibits the induction of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) messenger Ribonucleic acid (mRNA) in a dose-dependent manner after HepG2 cells have been treated with TNF-α (10 ng/mL). Ginsenoside Rb3 (0.1-10 μM) significantly increases cell viability and inhibits lactate dehydrogenase (LDH) release in a dose-dependent manner. PC12 cell viability as determined by MTT reduction is also markedly decreased after the cell is exposed to oxygen and glucose deprivation (OGD)/OGD-Rep. But, when the cells are pretreated with Ginsenoside Rb3 (0.1, 1, and 10 μM), OGD/OGD-Rep induced cell toxicity is significantly attenuated, which is concentration-dependently attenuated by Ginsenoside Rb3 treatment. The viabilities are raised to 52.8%±5.6%, 64.6%±5.7%, and 76.4%±8.8%, respectively, compared with the control group. |
体内研究 | Ginsenosides Rb3 is a major compound isolated from Gynostemma pentaphyllum that holistically improves gut microenvironment and induces anti-polyposis in Apc Min/+ mice. Six-weeks-old mice are subjected to Rb3 treatment, before the appearance of the intestinal polyps. All the mice are monitored for food intake, water consumption, and weight changes. Throughout the experiment, no Rb3/Rd-associated weight loss in mice is observed. In addition, none of the treated mice show variations in food and water consumption. Whereas, the number and size of the polyps are effectively reduced by Rb3 treatments. |
安全术语 | 24/25 - 避免与皮肤和眼睛接触。 |
WGK Germany | 3 |
RTECS | LZ5857000 |
海关编号 | 29389090 |
参考资料 展开查看 | 1. 魏可欣 郭云龙 史娜文 等. 人参药材等级标准[J]. 中国实验方剂学杂志 2019 025(011):145-153. 2. 张初瑜 陈素红 吴素香. 一测多评法测定复方人参片中的8种苷类成分[J]. 中国现代应用药学 2018 35(05):90-96. 3. Zhang, Hong-Mei, et al. "Holistic quality evaluation of commercial white and red ginseng using a UPLC-QTOF-MS/MS-based metabolomics approach." Journal of pharmaceutical and biomedical analysis 62 (2012): 258-273.https://doi.org/10.1016/j.jpba.2012.01.010 4. Manying Wang, Jixiang Ren, Xuenan Chen, Jianzeng Liu, Xiaohao Xu, Xiangyan Li, Daqing Zhao, Liwei Sun, 20(S)-ginsenoside Rg3 promotes myoblast differentiation and protects against myotube atrophy via regulation of the Akt/mTOR/FoxO3 pathway, Biochemical Ph 5. Hong Zhang, Jia-Ming Jiang, Dan Zheng, Ming Yuan, Zhi-Ying Wang, Hong-Mei Zhang, Chang-Wu Zheng, Lian-Bo Xiao, Hong-Xi Xu,A multidimensional analytical approach based on time-decoupled online comprehensive two-dimensional liquid chromatography coupled wit 6. Hong Zhang, Jia-Ming Jiang, Dan Zheng, Ming Yuan, Zhi-Ying Wang, Hong-Mei Zhang, Chang-Wu Zheng, Lian-Bo Xiao, Hong-Xi Xu,A multidimensional analytical approach based on time-decoupled online comprehensive two-dimensional liquid chromatography coupled wit 7. Hong Zhang, Jia-Ming Jiang, Dan Zheng, Ming Yuan, Zhi-Ying Wang, Hong-Mei Zhang, Chang-Wu Zheng, Lian-Bo Xiao, Hong-Xi Xu,A multidimensional analytical approach based on time-decoupled online comprehensive two-dimensional liquid chromatography coupled wit 8. Joo, Kyung-Mi, et al. "Pharmacokinetic study of ginsenoside Re with pure ginsenoside Re and ginseng berry extracts in mouse using ultra performance liquid chromatography/mass spectrometric method." Journal of pharmaceutical and biomedical analysis 51.1 (20 9. [IF=6.06] Jiahong Han et al."Compatibility effects of ginseng and Ligustrum lucidum Ait herb pair on hematopoietic recovery in mice with cyclophosphamide-induced myelosuppression and its material basis."J Ginseng Res. 2020 Mar;44:291 10. [IF=6.06] Yang Xiu et al."Simultaneous determination and difference evaluation of 14 ginsenosides in Panax ginseng roots cultivated in different areas and ages by high-performance liquid chromatography coupled with triple quadrupole mass spectrometer in the multipl 11. [IF=5.34] Shan-Shan Zhou et al."Stronger anti-obesity effect of white ginseng over red ginseng and the potential mechanisms involving chemically structural/compositional specificity to gut microbiota."Phytomedicine. 2020 Aug;74:152761 12. [IF=4.759] Song-Lin Li et al."Ultra-high-performance liquid chromatography–quadrupole/time of flight mass spectrometry based chemical profiling approach to rapidly reveal chemical transformation of sulfur-fumigated medicinal herbs, a case study on white ginseng."J C 13. [IF=3.935] Hong-Mei Zhang et al."Holistic quality evaluation of commercial white and red ginseng using a UPLC-QTOF-MS/MS-based metabolomics approach."J Pharmaceut Biomed. 2012 Mar;62:258 14. [IF=3.935] Hong Zhang et al."A multidimensional analytical approach based on time-decoupled online comprehensive two-dimensional liquid chromatography coupled with ion mobility quadrupole time-of-flight mass spectrometry for the analysis of ginsenosides from white a 15. [IF=3.935] Shan-Shan Zhou et al."Synchronous characterization of carbohydrates and ginsenosides yields deeper insights into the processing chemistry of ginseng."J Pharmaceut Biomed. 2017 Oct;145:59 16. [IF=6.06] Zhenzhuo Li et al."Ginsenosides repair UVB-induced skin barrier damage in BALB/c hairless mice and HaCaT keratinocytes."J Ginseng Res. 2021 May;: 17. [IF=5.396] Hui Wang et al."Ginsenoside extract from ginseng extends lifespan and health span in Caenorhabditis elegans."Food Funct. 2021 Aug;12(15):6793-6808 18. [IF=4.96] Manying Wang et al."20(S)-ginsenoside Rg3 promotes myoblast differentiation and protects against myotube atrophy via regulation of the Akt/mTOR/FoxO3 pathway."Biochem Pharmacol. 2020 Oct;180:114145 19. [IF=4.142] Wang Chenxi et al."Rapid discovery of potential ADR compounds from injection of total saponins from Panax notoginseng using data-independent acquisition untargeted metabolomics."Analytical And Bioanalytical Chemistry. 2021 Oct 26 20. [IF=3.647] Wenqi Jin et al."Ginsenoside Rd attenuates ACTH-induced corticosterone secretion by blocking the MC2R-cAMP/PKA/CREB pathway in Y1 mouse adrenocortical cells."Life Sci. 2020 Mar;245:117337 21. [IF=3.645] Mengmeng Jia et al."UHPLC coupled with mass spectrometry and chemometric analysis of Kang-Ai injection based on the chemical characterization, simultaneous quantification, and relative quantification of 47 herbal alkaloids and saponins."J Sep Sci. 2020 Ju 22. [IF=3.361] Yuhao Zhang et al."An integrated approach for structural characterization of Gui Ling Ji by traveling wave ion mobility mass spectrometry and molecular network."Rsc Adv. 2021 Apr;11(26):15546-15556 23. [IF=2.629] Zhang Meiyu et al."In Vitro Transformation of Protopanaxadiol Saponins in Human Intestinal Flora and Its Effect on Intestinal Flora."Evid-Based Compl Alt. 2021;2021:1735803 24. [IF=2.57] Chengcheng Sun et al."ShenmaYizhi Decoction Improves the Mitochondrial Structure in the Brain and Ameliorates Cognitive Impairment in VCI Rats via the AMPK/UCP2 Signaling Pathway."Neuropsych Dis Treat. 2021; 17: 1937–1951 25. [IF=2.408] Fang-Tong Li et al."In Vitro Effects of Ginseng and the Seed of Zizyphus jujuba var. spinosa on Gut Microbiota of Rats with Spleen Deficiency."Chem Biodivers. 2020 Sep;17(9):e2000199 26. [IF=4.411] Xuanming Zhang et al.Region-Specific Biomarkers and Their Mechanisms in the Treatment of Lung Adenocarcinoma: A Study of Panax quinquefolius from Wendeng, China.Molecules. 2021 Jan;26(22):6829 27. [IF=2.419] Yinping Jin et al."Dynamic changes of ginsenosides in Panax quinquefolius fruit at different development stages measured by UHPLC-Orbitrap MS."Rapid Communications In Mass Spectrometry. 2022 Feb 17 28. [IF=6.06] Qingxia Huang et al."Major ginsenosides from Panax ginseng promote aerobic cellular respiration and SIRT1-mediated mitochondrial biosynthesis in cardiomyocytes and neurons."J Ginseng Res. 2022 Feb;: 29. [IF=7.514] Di Qu et al."Sediment formation and analysis of the main chemical components of aqueous extracts from different parts of ginseng roots."Food Chem. 2022 Jan;:132146 30. [IF=5.811] He Zhang et al."Prevention Effect of Protopanaxadiol-Type Saponins Saponins and Protopanaxatriol-Type Saponins on Myelosuppression Mice Induced by Cyclophosphamide.."Frontiers in Pharmacology. 2022 Apr;13:845034-845034 31. [IF=4.35] Di Qu et al."Analysis of Key Chemical Components in Aqueous Extract Sediments of Panax Ginseng at Different Ages."Foods. 2022 Jan;11(8):1161 32. [IF=5.34] Dong Shao et al."Identification of the active compounds and functional mechanisms of Jinshui Huanxian formula in pulmonary fibrosis by integrating serum pharmacochemistry with network pharmacology."PHYTOMEDICINE. 2022 Jul;102:154177 33. [IF=6.576] Rensong Huang et al."Studies on Bioactive Components of Red Ginseng by UHPLC-MS and Its Effect on Lipid Metabolism of Type 2 Diabetes Mellitus."Frontiers in Nutrition. 2022; 9: 865070 |
微信搜索化工百科或扫描下方二维码,添加化工百科小程序,随时随地查信息!