中文名 | 染料木黄酮 |
英文名 | Genistein |
别名 | 染料木素 染料木因 金雀异黄酮 染料木黄酮 木槿 芙蓉花 天然染料木素 金雀异黄酮,染料木黄酮 5,7,4-三羟基异黄酮 染料木黄酮(-20℃) 5,7,4 一三羟基异黄酮 染料木素GENISTEIN 4',5,7-三羟基异黄酮 |
英文别名 | prunetol Genistein C.I. 75610 sophoricol AKOS NCG1-0029 4,5,7-Trihydroxyisoflavone 4',5,7-TRIHYDROXYISOFLAVONE 4',5,7-trihydroxyisoflavone 4',5,7-trihydroxy-isoflavon 5,7,4'-TRIHYDROXYISOFLAVONE 5,7-DIHYDROXY-3-(4-HYDROXY-PHENYL)-CHROMEN-4-ONE 5,7-dihydroxy-3-(4-hydroxyphenyl)-4H-chromen-4-one 5,7-DIHYDROXY-3-(4-HYDROXYPHENYL)-4H-1-BENZOPYRAN-4-ONE |
CAS | 446-72-0 |
EINECS | 207-174-9 |
化学式 | C15H10O5 |
分子量 | 270.24 |
InChI | InChI=1/C15H10O5/c16-9-3-1-8(2-4-9)11-7-20-13-6-10(17)5-12(18)14(13)15(11)19/h1-7,16-18H |
InChIKey | TZBJGXHYKVUXJN-UHFFFAOYSA-N |
密度 | 1.2319 (rough estimate) |
熔点 | 297-298 °C |
沸点 | 333.35°C (rough estimate) |
闪点 | 217.1°C |
水溶性 | insoluble |
蒸汽压 | 6E-13mmHg at 25°C |
溶解度 | DMSO: 可溶性 |
折射率 | 1.6000 (estimate) |
酸度系数 | 6.51±0.20(Predicted) |
存储条件 | -20°C |
稳定性 | 光敏 |
外观 | 粉末 |
颜色 | off-white |
Merck | 14,4391 |
BRN | 263823 |
物化性质 | 白色固体。 |
MDL号 | MFCD00016952 |
危险品标志 | Xi - 刺激性物品 Xn - 有害物品 |
风险术语 | R36/38 - 刺激眼睛和皮肤。 R22 - 吞食有害。 |
安全术语 | S26 - 不慎与眼睛接触后,请立即用大量清水冲洗并征求医生意见。 S24/25 - 避免与皮肤和眼睛接触。 S22 - 切勿吸入粉尘。 |
WGK Germany | 3 |
RTECS | NR2392000 |
TSCA | Yes |
海关编号 | 29329990 |
Hazard Class | IRRITANT |
上游原料 | 乙醚 |
下游产品 | ALPINUMISOFLAVONE |
参考资料 展开查看 | 1. 朱春燕,王飞霞,李璐,安叶娟,来吉祥,张华峰,王凤忠.大豆芽中异黄酮的超声波-微波协同提取及其抑菌活性分析[J].中国油料作物学报,2017,39(02):245-252. 2. 徐成飞, 韦立群, 李通,等. 染料木素对HT29细胞IL-8分泌及Akt/NF-κB活化的影响[J]. 中国现代医学杂志, 2018, 28(30):17-21. 3. 张洪敏,曹世杰,何昕雅,邱峰,张德芹.染料木素对油酸诱导HepG2细胞脂质蓄积的影响[J].中国实验方剂学杂志,2019,25(18):71-75. 4. 李圆圆, 田晨颖, 刘晓美,等. 添加微量元素对黑豆发芽过程中成分的影响[J]. 食品工业科技, 2019, 40(09):104-110. 5. 申春莉, 沙见宇, 李曼,等. 灵芝固态发酵豆渣的抗氧化特性变化研究[J]. 食品研究与开发, 2019, 040(024):60-64. 6. 赵欣, 易若琨, 骞宇. 玻璃和不锈钢容器发酵水豆豉的乙醇提取物对结肠癌细胞的体外凋亡诱导效果比较[J]. 食品工业科技, 2017(10):303-308. 7. 崔方,韩增护,刘小花,杨亚飞,兰芝荟,封士兰.红芪提高免疫功能活性部位的谱效关系研究[J].中草药,2016,47(01):101-105. 8. 孙兰凤, 孙倩, 穆春旭,等. 蜂蜜中7种成分含量HPLC切换波长法测定[J]. 中国公共卫生, 2013(04):142-143. 9. 史艳艳, 刘庆生, 范志影,等. 雌激素质谱筛查分析方法的研究[J]. 饲料工业, 2015, 36(24):49-54. 10. 王飞霞 杨晓华 张华峰 朱春燕 李璐 王凤忠.3种豆芽中异黄酮、多酚的体外抗氧化活性及其对果蝇SOD、GSH-Px活力的影响[J].中国食品学报 2018 18(11):57-64. 11. 刘露 马金同 沈小梅 等. 一种保健酒中5种大豆异黄酮及芝麻素的超高效液相色谱检测法[J]. 酿酒 2019 046(004):86-88. 12. 朱怡霖, 张海生, 赵鑫帅,等. 大孔树脂分离纯化横山老黑豆酚类物质[J]. 食品与生物技术学报, 2019, 038(009):103-110. 13. 闫征 王帆 吴寒 等. 不同烫漂方式对碱蓬活性成分及抗氧化能力的影响[J]. 江苏农业学报 2017(5). 14. 靳羽慧, 刘长忠, 徐响,等. 蒸汽爆破对豆渣中大豆异黄酮的影响研究[J]. 中国粮油学报, 2017(10). 15. 唐君, 付强, 崔勐,等. 黄酮与溶菌酶相互作用的强度衰减-基质辅助激光解吸离子化-质谱研究[J]. 分析化学, 2016, 044(007):1071-1076. 16. 周凯文, 陈晓默, 刘慧琳,等. 多酚黄酮物质对晚期糖基化终产物的抑制研究[J]. 食品研究与开发, 2018, v.39;No.329(04):7-13. 17. 郭天赐, 赵石磊, 刘石生. 苦杏仁β-葡萄糖苷酶水解豆浆中大豆异黄酮的工艺研究[J]. 食品研究与开发, 2019(12). 18. 赵石磊, 何旭, 王爱珠,等. 酶法提高豆浆中大豆异黄酮苷元含量的工艺研究[J]. 食品工业, 2019, 040(001):100-104. 19. 黎映琼,蔡庆群,苏志强,陈标妹.不同产地木豆叶中5种黄酮类成分含量的比较及聚类分析[J].安徽农业科学,2020,48(20):203-205+209. 20. 王艳玲. 染料木素抑制MCR-1活性的作用机制的初步研究[D].吉林大学,2020. 21. 黄玉军,周帆,李颖华,于俊娟,顾瑞霞.植物乳杆菌58发酵豆乳产大豆异黄酮苷元条件的优化[J].现代食品科技,2021,37(02):183-190. 22. 李丹丹,梁宗锁,普布卓玛,杨宗岐,韩蕊莲,徐学选.干旱胁迫对紫花苜蓿黄酮类化合物含量及其合成途径关键酶活性的影响[J].西北植物学报,2020,40(08):1380-1388. 23. 周文红,郭咪咪,毕艳红,王朝宇,段章群.酶解制备苷元型大豆异黄酮[J].中国油脂,2020,45(12):100-104. 24. 常冠华,薄颖异,崔洁,徐露露,赵梓邯,王文全,侯俊玲.基于UPLC-Q-Exactive Orbitrap-MS分析甘草地上部分主要化学成分[J].中国中药杂志,2021,46(06):1449-1459. 25. 黄玉军,周帆,于俊娟,李颖华,顾瑞霞.高转化大豆异黄酮乳酸菌的筛选及在豆乳中的发酵特性[J].食品研究与开发,2021,42(03):157-162. 26. 曹冬英,李鸷,许文,隋利强,徐伟.4种市售黑豆及成品淡豆豉中异黄酮含量分析[J].药学研究,2020,39(10):581-584. 27. Huang, Guocheng, Weixi Cai, and Baojun Xu. "Improvement in beta-carotene, vitamin B2, GABA, free amino acids and isoflavones in yellow and black soybeans upon germination." LWT 75 (2017): 488-496.https://doi.org/10.1016/j.lwt.2016.09.029 28. Huang, Xiya, Weixi Cai, and Baojun Xu. "Kinetic changes of nutrients and antioxidant capacities of germinated soybean (Glycine max L.) and mung bean (Vigna radiata L.) with germination time." Food chemistry 143 (2014): 268-276.https://doi.org/10.1016/j.foo 29. Zhu, Yi-Lin, et al. "Composition, distribution, and antioxidant activity of phenolic compounds in 18 soybean cultivars." Journal of AOAC International 101.2 (2018): 520-528.https://doi.org/10.5740/jaoacint.17-0156 30. Liu, Mengyue, et al. "A high throughput screening method for endocrine disrupting chemicals in tap water and milk samples based on estrogen receptor α and gold nanoparticles." Analytical Methods 12.2 (2020): 200-204.DOI https://doi.org/10.1039/C9AY02179E 31. [IF=7.514] Xiya Huang et al."Kinetic changes of nutrients and antioxidant capacities of germinated soybean (Glycine max L.) and mung bean (Vigna radiata L.) with germination time."Food Chem. 2014 Jan;143:268 32. [IF=7.514] Lu Xu et al."A systematic, comparative study on the beneficial health components and antioxidant activities of commercially fermented soy products marketed in China."Food Chem. 2015 May;174:202 33. [IF=7.46] Yiming Liang et al."Molecularly imprinted electrochemical sensor for daidzein recognition and detection based on poly(sodium 4-styrenesulfonate) functionalized graphene."Sensor Actuat B-Chem. 2017 Nov;251:542 34. [IF=4.952] Guocheng Huang et al."Improvement in beta-carotene, vitamin B2, GABA, free amino acids and isoflavones in yellow and black soybeans upon germination."Lwt Food Sci Technol. 2017 Jan;75:488 35. [IF=3.738] Selma Houchi et al."Investigation of common chemical components and inhibitory effect on GES-type β-lactamase (GES22) in methanolic extracts of Algerian seaweeds."Microb Pathogenesis. 2019 Jan;126:56 36. [IF=3.645] Wenjie Wu et al."Simple, rapid, and environmentally friendly method for the separation of isoflavones using ultra-high performance supercritical fluid chromatography."J Sep Sci. 2017 Jul;40(13):2827-2837 37. [IF=2.19] Y.J. Chen et al."Phytochemical Profiles of Edible Kudzu (Pueraria thomsonii Benth) Grown in China as Affected by Thermal Processing."J Food Process Pres. 2017 Feb;41(1):e12754 38. [IF=1.913] Zhu Yi-Lin et al."Composition, Distribution, and Antioxidant Activity of Phenolic Compounds in 18 Soybean Cultivars."J Aoac Int. 2018 Mar;101(2):520-528 39. [IF=9.811] Manjie Gao et al."High-Crystallinity Covalent Organic Framework Synthesized in Deep Eutectic Solvent: Potentially Effective Adsorbents Alternative to Macroporous Resin for Flavonoids."Chem Mater. 2021;33(20):8036–8051 40. [IF=7.514] Xiaoming Yu et al."Impact of processing technologies on isoflavones, phenolic acids, and antioxidant capacities of soymilk prepared from 15 soybean varieties."Food Chem. 2021 May;345:128612 41. [IF=4.769] Jing Han et al."Qualitative and quantitative evaluation of Flos Puerariae by using chemical fingerprint in combination with chemometrics method."J Pharm Anal. 2021 Sep;: 42. [IF=4.759] Wenjie Wu et al."An analytical strategy for accurate, rapid and sensitive quantitative analysis of isoflavones in traditional Chinese medicines using ultra-high performance supercritical fluid chromatography: Take Radix Puerariae as an example."J Chromato 43. [IF=4.411] Liqing Yin et al."Neuroprotective Potency of Tofu Bio-Processed Using Actinomucor elegans against Hypoxic Injury Induced by Cobalt Chloride in PC12 Cells."Molecules. 2021 Jan;26(10):2983 44. [IF=4.411] Liyu Luo et al."Integrated Phytochemical Analysis Based on UPLC-MS and Network Pharmacology Approaches to Explore the Quality Control Markers for the Quality Assessment of Trifolium pratense L.."Molecules. 2020 Jan;25(17):3787 45. [IF=4.171] Jinhong Xu et al."Genistein suppresses allergic contact dermatitis through regulating the MAP2K2/ERK pathway."Food Funct. 2021 May;12(10):4556-4569 46. [IF=3.935] Yanchao Xing et al."An effective strategy for distinguishing the processing degree of Polygonum multiflorum based on the analysis of substance and taste by LC-MS, ICP-OES and electronic tongue."J Pharmaceut Biomed. 2021 Oct;205:114328 47. [IF=3.645] Hongmin Zhang et al."Simultaneous determination of five isoflavones in rat plasma by LC-MS/MS: Comparative pharmacokinetic characteristics of Puerariae lobatae radix in normal and type 2 diabetic rats."J Sep Sci. 2019 Aug;42(16):2592-2601 48. [IF=3.512] Li-Li Hong et al."Altering the Regioselectivity of Cytochrome P450 BM3 Variant M13 toward Genistein through Protein Engineering and Variation of Reaction Conditions."Acs Omega. 2020;5(49):32059–32066 49. [IF=3.373] Wanning Chen et al."The composition differences between small black beans and big black beans from different habitats and its effects on the processing of Polygonum multiflorum."Phytochem Analysis. 2021 Sep;32(5):767-779 50. [IF=3] Run-Jia XU et al."3′-Methoxydaidzein exerts analgesic activity by inhibiting voltage-gated sodium channels."Chin J Nat Medicines. 2019 Jun;17:413 51. [IF=3] Qu Lala et al."Phenotypic assessment and ligand screening of ETA/ETB receptors with label-free dynamic mass redistribution assay."N-S Arch Pharmacol. 2020 Jun;393(6):937-950 52. [IF=2.984] Chenkai Wang et al."Comparative transcriptome analysis of roots, stems, and leaves of Pueraria lobata (Willd.) Ohwi: identification of genes involved in isoflavonoid biosynthesis."Peerj. 2021 Feb;9:e10885 53. [IF=1.797] Bihui Liu et al."Effects of Lactobacillus plantarum CQPC01‐fermented soybean milk on activated carbon‐induced constipation through its antioxidant activity in mice."Food Sci Nutr. 2019 Jun;7(6):2068-2082 54. [IF=7.514] Chengwen Lu et al."Effect of pulsed electric field on soybean isoflavone glycosides hydrolysis by β-glucosidase: Investigation on enzyme characteristics and assisted reaction."Food Chem. 2022 Jun;378:132032 55. [IF=8.128] Lijuan Yang et al."Sulfuric-acid-mediated synthesis strategy for multi-colour aggregation-induced emission fluorescent carbon dots: Application in anti-counterfeiting, information encryption, and rapid cytoplasmic imaging."J Colloid Interf Sci. 2022 Apr;6 56. [IF=4.57] Liu Jinyue et al."Identification and characterization of unique 5-hydroxyisoflavonoid biosynthetic key enzyme genes in Lupinus albus."Plant Cell Reports. 2021 Dec 01 57. [IF=6.953] Hongdong Song et al."Fabrication of chitosan-coated epigallocatechin-3-gallate (EGCG)-hordein nanoparticles and their transcellular permeability in Caco-2/HT29 cocultures."Int J Biol Macromol. 2021 Dec;: 58. [IF=7.514] Xuefeng Chen et al."Quantitative analyses for several nutrients and volatile components during fermentation of soybean by Bacillus subtilis natto."Food Chem. 2021 Dec;:131725 59. [IF=4.412] Haifan Liu et al."Pharmacokinetics, Prostate Distribution and Metabolic Characteristics of Four Representative Flavones after Oral Administration of the Aerial Part of Glycyrrhiza uralensis in Rats."MOLECULES. 2022 Jan;27(10):3245 60. [IF=7.514] Jie Meng et al."Conduction of a chemical structure-guided metabolic phenotype analysis method targeting phenylpropane pathway via LC-MS: Ginkgo biloba and soybean as examples."FOOD CHEMISTRY. 2022 Oct;390:133155 61. [IF=6.576] Junkun Pan et al."Inhibition of Dipeptidyl Peptidase-4 by Flavonoids: Structure–Activity Relationship, Kinetics and Interaction Mechanism."Frontiers in Nutrition. 2022; 9: 892426 62. [IF=7.514] Rui Wang et al."Functionalization of soy residue (okara) by enzymatic hydrolysis and LAB fermentation for B2 bio-enrichment and improved in vitro digestion."Food Chem. 2022 Sep;387:132947 |
危险品标志 Xi
危险类别码 36/38
安全说明 26-24/25-22
WGK Germany 3
RTECS号 NR2392000
HazardClass IRRITANT
毒害物质数据 446-72-0(Hazardous Substances Data)
淡黄色树枝状针晶粉末。mp297℃-298℃;溶于常用的有机溶剂,几乎不溶于水,溶于稀碱中呈黄色。
大豆异黄酮品牌多,消费者无所适从,选择大豆异黄酮?
大豆异黄酮是非常好的女性保健食品,希望消费者对自己的身体负责。要查看对方的生产和质量等手续。
骨质疏松是指骨组织减少而导致骨骼脆而易碎,易骨折。常见于更年期后妇女及老年男子(由于激素变化或钙和维生素D不足)。中老年女性骨质疏松发病率比男性高很多,主要原因是卵巢功能衰退后雌激素水平下降,骨代谢出现负平衡,骨量减少。异黄酮可与骨细胞上的雌激素受体结合,减少骨质流失,同时增加机体对钙的吸收,增加骨密度。
长期单独服用雌激素可使乳腺癌、子宫内膜癌发生率增加5至7倍。大豆异黄酮物质结构和雌性激素相似,所以能结合到细胞表面的雌性受体,同时激活其它抗癌症机制,减少了妇女因雌激素高水平患子宫内膜癌、乳腺癌的危险性。
心脏病也是一种与雌激素相关的疾病,作为植物雌激素的大豆异黄酮其降低血脂、预防心脏病的机制为:雌激素样的作用促进甲状腺素分泌,促进胆汁排泄。在降低胆固醇时能降低低密度脂蛋白(LDL)胆固醇,而不降低高密度脂蛋白(HDL)胆固醇,已是被充分证明了的。异黄酮作为黄酮类化合物的特色,具有生物抗氧化作用,这一点非常重要。因为低密度脂蛋白(LDL)胆固醇的氧化是动脉硬化过程的关键因子。每天接受80毫克染料木黄酮纯品的妇女可增加动脉弹性约26%。
早老性痴呆症是目前最常见的一种痴呆症,女性多患。近年来研究表明,人类的大脑也属于雌激素作用的靶组织,脑内具有记忆功能的海马突触小体含雌激素受体,医学界已证实,雌激素水平与老年性痴呆密切相关,服用大豆异黄酮和真正的雌激素对脑部都是有益的。
经期不适一般与雌激素分泌不平衡有关,长期补充大豆异黄酮可使体内雌激素维持正常水平,达到改善经期不适的目的。
大豆异黄酮的雌激素样作用可使女性阴道上皮细胞的成熟度增加,阴道肌肉弹性增强从而提高性生活质量。
心血管疾病(CHD)为多因素疾病,其中胆固醇(Ch)起着重要作用。在日本进行的一项5000人的大规模研究,其结果表明大豆异黄酮具有降低胆固醇Ch抑制血栓形成的作用。在英国对年青女性的一项研究中显示了异黄酮的剂量效应关系,每天45 mg以上异黄酮连续30天可降低总Ch和LDL-Ch水平10%,而23 mg异黄酮则无作用。
大豆异黄酮可降低机体对血清LDL氧化的易感性。血清LDL脂蛋白被氧化后,激活人体内巨噬细胞的吞噬作用,并在动脉管壁内发展为泡沫细胞,进而形成粥样斑块。大豆异黄酮不仅自身具有抗氧化作用,还可诱导抗氧化酶活性的增高,提高血清LDL的抗氧化性预防动脉血管壁粥样斑块的形成,防止血管粥样性硬化。同时增加动脉血管的顺应性,扩张血管。大豆异黄酮还通过影响酪氨酸激酶抑制动脉粥样硬化过程,包括泡沫细胞、脂肪样纹、增生、纤维状噬斑浸润、破裂与溃疡,保持了心脏动脉血管的畅通无阻,预防心血管疾病的发生。
微信搜索化工百科或扫描下方二维码,添加化工百科小程序,随时随地查信息!