中文名 | 白藜芦醇 |
英文名 | resveratrol |
别名 | 芪三酚 茋三酚 虎杖甙元 白黎芦醇 白藜芦醇 淫羊藿素 虎仗提取物 反式白藜芦醇标准品 3,4',5-三羟基芪 3,4,5-三羟基反式 (E)-5-[2-(4-羟苯基)-乙烯基]-1,3-苯二酚 |
英文别名 | RESVERATROL Resveratrol resveratrol RESVERATROLE TRANS-RESVERATROL Veratrum album L alcohol TRANS-3,5,4'-STILBENETRIOL TRANS-3,4,5-TRIHYDROXYSTILBENE trans-3,4,5-Trihydroxystilbene 3,4',5-Trihydroxy-trans-stilbene 3,4',5-TRIHYDROXY-TRANS-STILBENE 3,4',5'-TRIHYDROXY-TRANS-STILBENE TRANS-1,2-(3,4',5-TRIHYDROXYDIPHENYL)ETHYLENE 5-[(E)-2-(4-hydroxyphenyl)ethenyl]benzene-1,3-diol 5-[(1E)-2-(4-Hydroxyphenyl)ethenyl]-1,3-benzenediol |
CAS | 501-36-0 |
EINECS | 610-504-8 |
化学式 | C14H12O3 |
分子量 | 228.24 |
InChI | InChI=1/C14H12O3/c15-12-5-3-10(4-6-12)1-2-11-7-13(16)9-14(17)8-11/h1-9,15-17H/b2-1+ |
InChIKey | LUKBXSAWLPMMSZ-OWOJBTEDSA-N |
密度 | 1.359±0.06 g/cm3(Predicted) |
熔点 | 253-255°C |
沸点 | 449.1±14.0 °C(Predicted) |
闪点 | 222.3°C |
水溶性 | Soluble in water (3 mg/100mL), ethanol (50 mg/mL), DMSO (16 mg/mL), DMF (~65 mg/mL), PBS (pH 7.2) (~100µg/mL), methanol, and acetone (50 mg/mL). |
蒸汽压 | 1.11E-08mmHg at 25°C |
溶解度 | 溶于DMSO (高达25 mg/ml) 或乙醇 (高达20 mg/ml)。 |
折射率 | 1.762 |
酸度系数 | 9.22±0.10(Predicted) |
存储条件 | -20°C |
稳定性 | 2年稳定供应。DMSO或乙醇中的溶液可以在-20 °C下储存长达1个月。 |
外观 | 粉末 |
颜色 | Off-white |
Merck | 14,8158 |
物化性质 | 无味、白色粉末,完全溶解于乙醇。 |
MDL号 | MFCD00133799 |
危险品标志 | Xi - 刺激性物品 |
风险术语 | R37/38 - 刺激呼吸系统和皮肤+B52。 R41 - 对眼睛有严重伤害。 R36/38 - 刺激眼睛和皮肤。 R36 - 刺激眼睛。 R43 - 与皮肤接触可能致敏。 R22 - 吞食有害。 |
安全术语 | S26 - 不慎与眼睛接触后,请立即用大量清水冲洗并征求医生意见。 S39 - 戴护目镜或面具。 S37/39 - 戴适当的手套和护目镜或面具。 S36/37/39 - 穿戴适当的防护服、手套和护目镜或面具。 |
WGK Germany | 3 |
RTECS | CZ8987000 |
海关编号 | 29072990 |
上游原料 | 乙酰化白藜芦醇 5-碘间苯二酚 1-(3,5-二乙酰氧基苯基)溴乙烷 3,5-二羟基苯甲醛 4-羟基苯乙烯 |
下游产品 | 二氢藜芦醇 阿魏酸 天然维生素 E |
参考资料 展开查看 | 1. 张敏敏 代红军. 2015年贺兰山东麓产区赤霞珠葡萄成熟期品质的监测[J]. 农业科学研究 2016 37(002):29-33. 2. 黄渊 岳世阳 熊善柏 等. 2种天然抗氧化剂与鲢鱼肌球蛋白的相互作用[J]. 食品科学 2019 40(04):24-30. 3. 张培培 鲁科达 夏虹 等. 加味黄风汤对糖尿病肾病大鼠肾组织SIRT1及PGC-1α表达的影响[J]. 中华中医药杂志 2019 34(02):589-593. 4. 冯卫生 杨方方 张莉 等. 南葶苈子水提物对多柔比星诱导H9c2细胞凋亡和氧化应激的抑制作用[J]. 中国药学杂志 2018 053(023):1999-2007. 5. 孙磊磊 康健 邹积赟. 响应面优化酶法辅助提取葡萄叶白藜芦醇工艺[J]. 食品科技 2015 040(002):276-281. 6. 孙磊磊 康健. 响应面试验优化超声波法提取葡萄叶白藜芦醇工艺[J]. 食品工业 2015(05):16-20. 7. 薛梦,张加余,刘明玉,梁莉靖,刘湉,岳贵娟,姜悦,高艳艳,马群.基于HPLC-LTQ-Orbitrap MS技术芪归银提取物在ICR小鼠体内入血移行成分的鉴定[J].中华中医药学刊,2017,35(12):3061-3067. 8. 徐艳, 张心怡, 狄留庆,等. 基于热熔挤出技术的虎杖提取物速释固体分散体制备研究[J]. 中草药, 2017(23):4865-4871. 9. 秦芸, 石沛霖, 刘维维,等. 富硒大米肽体内抗氧化活性研究. 10. 孙磊磊, 康健. 微波法辅助提取葡萄叶白藜芦醇及其纯化研究[J]. 食品工业科技, 2015, 36(020):271-277. 11. 田木星,王伟华,苑贝贝,刚虎军,颜桥.慕萨莱思酒发酵过程中主要成分变化规律研究[J].中国食品添加剂,2017(03):61-67. 12. 李星星, 鲍建国, 冷一非,等. 木质素过氧化物酶降解四环素机理的研究[J]. 安全与环境工程, 2016, 23(05):61-68. 13. 华芳, 王国平, 施伶俐. 正交试验优选白藜芦醇纳米囊泡处方[J]. 长江大学学报(自科版), 2018, 015(016):5-8. 14. 丁玲, 秦晨亮, 代红军. 水杨酸对蛇龙珠葡萄白藜芦醇诱导合成的影响[J]. 中外葡萄与葡萄酒, 2016, 000(004):18-22. 15. 宋军鸽, 曹晨, 李进伟,等. 测定菜籽油中酚类化合物样品前处理方法的比较[J]. 中国油脂, 2019, v.44;No.346(12):137-141. 16. 陈红英, 冀雅静, 吴丹,等. 白藜芦醇对于小鼠败血症休克的保护作用及其作用机制的研究[J]. 中国药理学通报, 2015, 000(009):1216-1221. 17. 王睿,王琪,金明顺,陈雪,王伟,张宁,杨德柱,刘建华,王国忠.白藜芦醇对围绝经期抑郁症模型小鼠行为及Wnt/β-catenin信号通路主要蛋白表达的影响[J].神经解剖学杂志,2017,33(06):718-722. 18. 王睿, 王琪, 金明顺,等. 白藜芦醇对围绝经期抑郁症模型小鼠行为学影响及机制分析[J]. 中国实验方剂学杂志, 2017, 023(004):132-139. 19. 隋萍,孙欣宇,张琛,王骞,孙婧瑜,翟浩帆,王琪.白藜芦醇对小鼠体内Lewis肺癌细胞生长的抑制作用及免疫调节机制研究[J].中国医学创新,2018,15(36):19-22. 20. 陈薪薪, 仝欢, 陈宇,等. 白藜芦醇对小鼠肾纤维化TGF-β_1/Smads信号转导通路的干预研究[J]. 中华中医药学刊, 2016, 034(005):1224-1227. 21. 田丽莉, 盛东来, 朱国福. 白藜芦醇对斑马鱼尾鳍再生的促进作用及机制研究[J]. 时珍国医国药, 2016, 027(005):1098-1101. 22. 王谊荣, 何玉婷, 杨雯,等. 白藜芦醇对梗阻性黄疸大鼠肝损伤的保护作用[J]. 长治医学院学报, 2019(4). 23. 张旭东, 李旭炯, 何玉婷,等. 白藜芦醇对梗阻性黄疸大鼠肠道黏膜的保护作用[J]. 长治医学院学报 2017年31卷1期, 1-4页, 2017. 24. 林周豪, 白永恒, 陆红,等. 白藜芦醇抑制蛋白激酶B磷酸化缓解大鼠肌成纤维细胞形成及肾纤维化[J]. 中国药理学与毒理学杂志, 2019, 33(01):9-15. 25. 韩琴. 白藜芦醇调控Th17/Treg抑制血吸虫病肝脏肉芽肿[J]. 中国药理学通报, v.35(01):132-138. 26. 白永恒, 梁勇, 史波,等. 白藜芦醇调控猬信号对单侧输尿管梗阻大鼠肾间质纤维化的影响[J]. 中国药理学与毒理学杂志, 2014, 000(005):718-724. 27. 张茹, 元琳琳, 孙凯玥,等. 纳米白藜芦醇脂质体的制备及分配系数测定[J]. 物理化学学报, 2020, v.36(06):70-76. 28. 华芳, 施伶俐, 唐晓敏. 葡萄皮籽提取物中白藜芦醇的含量测定及其凝胶剂的制备工艺[J]. 盐城工学院学报(自然科学版), 2017, v.30;No.118(04):54-57. 29. 秦晨亮, 丁玲, 代红军. 赤霞珠葡萄果实发育过程中酚类物质含量与相关酶活性的关系[J]. 浙江农业学报, 2015, 27(011):1922-1926. 30. 郑妍 张春岭 刘慧 等. UPLC法测定猕猴桃果汁中的酚类物质含量[J]. 果树学报 2018 035(008):1006-1015. 31. 陈廷贵, 魏煜如, 张立伟. 磁珠固定化酶和LC-MS/MS筛选鉴定虎杖中的胰脂肪酶抑制剂[J]. 天然产物研究与开发, 2017(2). 32. 余意 李佳兴 金艳 等. UPLC-MS/MS法测定制何首乌中9种二苯乙烯苷类成分含量[J]. 中药材 2018 41(006):1395-1398. 33. 余意 高峰 李佳兴 等. UPLC-MS/MS测定何首乌中10个二苯乙烯苷类成分的含量[J]. 中国实验方剂学杂志 2018(23):87-92. 34. 兰海静, 杨伯宁, 黄联莉,等. 巴马特色饮食模式对D-半乳糖致衰老小鼠运动能力和抗焦虑水平的影响[J]. 食品科学, 2019, 40(19). 35. 罗益远, 刘娟秀, 王锋,等. 超高效液相色谱-串联质谱同时测定首乌藤中13种成分[J]. 中国中药杂志, 2016. 36. 罗益远 刘娟秀 刘廷 等. UPLC-MS/MS法同时测定何首乌中二苯乙烯 蒽醌 黄酮及酚酸类成分[J]. 质谱学报 2016(4):327-335. 37. 罗益远 刘娟秀 刘训红 等. 同基源何首乌和首乌藤化学成分含量分析[J]. 天然产物研究与开发 2016 28(7):1035-1044. 38. 周军, 彭媚, 陈薇,等. 药用虎杖剩余物的化学组成与热解特性[J]. 环境工程学报, 2018, 12(12):229-237. 39. 何倩, 苏比努尔, 李俊辉,等. 新疆药桑总黄酮的富集纯化工艺研究[J]. 安徽农业科学, 2019, 47(04):176-180. 40. 杨俊杰, 黄紫炎, 李林,等. 土茯苓产地加工与炮制一体化工艺优选[J]. 时珍国医国药, 2018, 29(09):2165-2168. 41. 杨俊杰,张艳玲,王峥涛,陆兔林.土茯苓产地加工过程中去皮的合理性分析[J].中国实验方剂学杂志,2017,23(03):1-5. 42. 周凯文, 陈晓默, 刘慧琳,等. 多酚黄酮物质对晚期糖基化终产物的抑制研究[J]. 食品研究与开发, 2018, v.39;No.329(04):7-13. 43. 陈静.Box-Behnken响应面法优化白藜芦醇脂质体的制备工艺[J].现代盐化工,2020,47(06):27-29. 44. 赵萌萌,张文刚,党斌,杨希娟,张杰,甘生智.超微粉碎对青稞麸皮粉多酚组成及抗氧化活性的影响[J].农业工程学报,2020,36(15):291-298. 45. 武鹏程,蒲云峰,张斌,张金荣,王丽玲,王强.响应面优化花生芽中白藜芦醇提取工艺[J].食品工业,2021,42(01):116-120. 46. 朱妮雅,马海玲,韩怡.白藜芦醇-壳寡糖无定型固体分散体的制备与体外评价[J].中国现代应用药学,2020,37(22):2752-2758 47. 明丹,郑荣秀.白藜芦醇对过敏性哮喘小鼠的影响[J].中国临床药理学杂志,2021,37(05):536-539. 48. 周慧慧,吕年银,佟书娟,史丽云,张伟伟.白藜芦醇通过线粒体调控血吸虫感染小鼠M1/M2极化[J].中国药理学通报,2021,37(01):98-106. 49. 刘丽娟,赵瑞芝,卢传坚.基于“药效-成分分析”的银屑灵优化方2号方抗银屑病配伍规律探讨[J].中华中医药杂志,2020,35(08):4171-4174. 50. 杨文娟,侯旭杰,阿依古丽·吾斯曼,侯文鑫,郭芹,蒲云峰,王强.超声辅助提取花生根多酚工艺优化及组成分析[J].食品研究与开发,2021,42(01):107-111. 51. 佘瑶瑶,刘自华,张颖,刘义梅,陈运中.湖北虎杖主要化学成分的含量分析及其与色差的相关性研究[J].食品安全质量检测学报,2021,12(03):960-967. 52. 徐艳阳,赵玉娟,高峰,王二雷,鲁海玲,李雪凤,姜雯雯,陈艳.高效液相色谱法分析中国人参不同部位中多酚类化合物[J].食品科学,2021,42(04):240-246. 53. 王梦雪,戴寒鹏,李金明,苏娅,韩欣然,李丽.土茯苓抑制CYP3A4酶活性的研究[J].长春师范大学学报,2020,39(08):60-63. 54. 徐芳芳,张秀莉,侯滔,曲腊腊,王纪霞,刘艳芳,梁鑫淼.天然产物中FFA1受体新激动剂的发现与研究[J].上海中医药大学学报,2021,35(01):12-19.[4]宫梦琪,孙倩,李振.天麻中天麻素提取工艺优化及抑制α-葡萄糖苷酶活性研究[J].中国果菜,2020,40(09):14-17+23. 55. 蒋梦丹,夏鹏国,梁宗锁,许鑫瀚,陈喜良,韩蕊莲.基于显微结构、抗氧化活性和化学成分的三叶青须根入药的可行性研究[J].时珍国医国药,2020,31(10):2492-2495. 56. 杨馨悦,杨宇驰,周秀娟,薛桂新.柑橘果醋发酵条件的优化及其成分分析[J].中国调味品,2020,45(10):75-79. 57. 汪颖舒,朱广灏,王冰,李杰荣,骆前飞,何修滢,赵佳逸,修彦凤.古法黑豆蒸晒与药典黑豆汁连续蒸对何首乌中12个成分含量的影响[J].中草药,2020,51(19):4972-4982. 58. Zhou, Li-Hua, et al. "Label-free quantitative proteomics reveals fibrinopeptide B and heparin cofactor II as potential serum biomarkers in respiratory syncytial virus-infected mice treated with Qingfei oral liquid formula." Chin J Nat Med 16 (2018): 241-25 59. Zhou, Li-Hua, et al. "Label-free quantitative proteomics reveals fibrinopeptide B and heparin cofactor II as potential serum biomarkers in respiratory syncytial virus-infected mice treated with Qingfei oral liquid formula." Chin J Nat Med 16 (2018): 241-25 60. Xiao-Ke Zheng, Yan-Gang Cao, Ying-Ying Ke, Yan-Li Zhang, Fang Li, Jian-Hong Gong, Xuan Zhao, Hai-Xue Kuang, Wei-Sheng Feng, Phenolic constituents from the root bark of Morus alba L. and their cardioprotective activity in vitro, Phytochemistry, Volume 135, 61. Jian, W., He, D. & Song, S. Synthesis, Biological Evaluation and Molecular Modeling Studies of New Oxadiazole-Stilbene Hybrids against Phytopathogenic Fungi. Sci Rep 6, 31045 (2016). https://doi.org/10.1038/srep31045 62. Chen, Guiyun, et al. "Complex coacervation of zein-chitosan via atmospheric cold plasma treatment: Improvement of encapsulation efficiency and dispersion stability." Food Hydrocolloids 107 (2020): 105943.https://doi.org/10.1016/j.foodhyd.2020.105943 63. Huang, Meigui, et al. "Liposome co-encapsulation as a strategy for the delivery of curcumin and resveratrol." Food & function 10.10 (2019): 6447-6458.https://doi.org/10.1039/C9FO01338E 64. Gao, Fangyuan, et al. "Cyclodextrin-based ultrasonic-assisted microwave extraction and HPLC-PDA-ESI-ITMSn separation and identification of hydrophilic and hydrophobic components of Polygonum cuspidatum: A green, rapid and effective process." Industrial Cro 65. Wang, Si-wei, et al. "Hesperetin, a SIRT1 activator, inhibits hepatic inflammation via AMPK/CREB pathway." International Immunopharmacology 89 (2020): 107036.https://doi.org/10.1016/j.intimp.2020.107036 66. Huang, Wenquan, et al. "Development of a resveratrol–zein–dopamine–lecithin delivery system with enhanced stability and mucus permeation." Journal of Materials Science 54.11 (2019): 8591-8601.https://doi.org/10.1007/s10853-019-03465-0 67. [IF=5.645] Fangyuan Gao et al."Cyclodextrin-based ultrasonic-assisted microwave extraction and HPLC-PDA-ESI-ITMSn separation and identification of hydrophilic and hydrophobic components of Polygonum cuspidatum: A green, rapid and effective process."Ind Crop Prod. 20 68. [IF=5.64] Wu Dousheng et al."Oleanolic Acid Induces the Type III Secretion System of Ralstonia solanacearum."Front Microbiol. 2015 Dec;0:1466 69. [IF=5.396] Jiachan Zhang et al."Understanding the role of extracts from sea buckthorn seed residues in anti-melanogenesis properties on B16F10 melanoma cells."Food Funct. 2018 Oct;9(10):5402-5416 70. [IF=4.825] Yongheng Bai et al."Resveratrol inhibits epithelial-mesenchymal transition and renal fibrosis by antagonizing the hedgehog signaling pathway."Biochem Pharmacol. 2014 Dec;92:484 71. [IF=4.411] Juanni Chen et al."Resveratrol and Coumarin: Novel Agricultural Antibacterial Agent against Ralstonia solanacearum In Vitro and In Vivo."Molecules. 2016 Nov;21(11):1501 72. [IF=4.22] Huang Wenquan et al."Development of a resveratrol–zein–dopamine–lecithin delivery system with enhanced stability and mucus permeation."J Mater Sci. 2019 Jun;54(11):8591-8601 73. [IF=4.072] Xiao-Ke Zheng et al."Phenolic constituents from the root bark of Morus alba L. and their cardioprotective activity in vitro."Phytochemistry. 2017 Mar;135:128 74. [IF=3.738] Selma Houchi et al."Investigation of common chemical components and inhibitory effect on GES-type β-lactamase (GES22) in methanolic extracts of Algerian seaweeds."Microb Pathogenesis. 2019 Jan;126:56 75. [IF=3.72] Shaomin Li et al."Polydopamine-Mediated Carrier with Stabilizing and Self-Antioxidative Properties for Polyphenol Delivery Systems."Ind Eng Chem Res. 2018;57(2):590–599 76. [IF=3.361] Junke Song et al."Activation of Nrf2 signaling by salvianolic acid C attenuates NF‑κB mediated inflammatory response both in vivo and in vitro."Int Immunopharmacol. 2018 Oct;63:299 77. [IF=3.267] Zhi-Jing Chen et al."Dietary Total Prenylflavonoids from the Fruits of Psoralea corylifolia L. Prevents Age-Related Cognitive Deficits and Down-Regulates Alzheimer’s Markers in SAMP8 Mice."Molecules. 2018 Jan;23(1):196 78. [IF=2.861] Yan-gang Cao et al."Two new phenolic constituents from the root bark of Morus alba L. and their cardioprotective activity."Nat Prod Res. 2018;32(4):391-398 79. [IF=2.478] De-Quan Zhang et al."Resveratrol Regulates Activated Hepatic Stellate Cells by Modulating NF‐κB and the PI3K/Akt Signaling Pathway."J Food Sci. 2016 Jan;81(1):H240-H245 80. [IF=2.391] Sun Hui et al."Ultrasound-assisted extraction of resveratrol from grape leaves and its purification on mesoporous carbon."Food Sci Biotechnol. 2018 Oct;27(5):1353-1359 81. [IF=7.514] Bowei Zhang et al."Intestinal pharmacokinetics of resveratrol and regulatory effects of resveratrol metabolites on gut barrier and gut microbiota."Food Chem. 2021 Sep;357:129532 82. [IF=6.583] Xing Zhang et al."Resveratrol suppresses the myofibroblastic phenotype and fibrosis formation in kidneys via proliferation‐related signalling pathways."Brit J Pharmacol. 2019 Dec;176(24):4745-4759 83. [IF=6.306] Yunke Huang et al."Ex vivo to in vivo extrapolation of syringic acid and ferulic acid as grape juice proxies for endothelium-dependent vasodilation: Redefining vasoprotective resveratrol of the French paradox."Food Chem. 2021 Jun;:130323 84. [IF=5.833] Zhou Zhidu et al."Ultra-sensitive amperometric determination of quercetin by using a glassy carbon electrode modified with a nanocomposite prepared from aminated graphene quantum dots, thiolated β-cyclodextrin and gold nanoparticles."Microchim Acta. 2020 85. [IF=5.396] Meigui Huang et al."Liposome co-encapsulation as a strategy for the delivery of curcumin and resveratrol."Food Funct. 2019 Oct;10(10):6447-6458 86. [IF=5.279] Xintong Tan et al."Resveratrol Prevents Acrylamide-Induced Mitochondrial Dysfunction and Inflammatory Responses via Targeting Circadian Regulator Bmal1 and Cry1 in Hepatocytes."J Agr Food Chem. 2019;67(31):8510–8519 87. [IF=5.279] Tong Zhu et al."Effects of White LED Light and UV-C Radiation on Stilbene Biosynthesis and Phytochemicals Accumulation Identified by UHPLC–MS/MS during Peanut (Arachis hypogaea L.) Germination."J Agr Food Chem. 2020;68(21):5900–5909 88. [IF=4.36] Li Lin et al."Study on the protection of water extracts of Polygoni Multiflori Radix and Polygoni Multiflori Radix Praeparata against NAFLD and its mechanism."J Ethnopharmacol. 2020 Apr;252:112577 89. [IF=4.192] Suwen Liu et al."Cerasus humilis Cherry Polyphenol Reduces High-Fat Diet-Induced Obesity in C57BL/6 Mice by Mitigating Fat Deposition, Inflammation, and Oxidation."J Agr Food Chem. 2020;68(15):4424–4436 90. [IF=3.943] Si-wei Wang et al."Hesperetin, a SIRT1 activator, inhibits hepatic inflammation via AMPK/CREB pathway."Int Immunopharmacol. 2020 Dec;89:107036 91. [IF=3.882] Kunpeng Yin et al."Lanthanide Metal–Organic Framework-Based Fluorescent Sensor Arrays to Discriminate and Quantify Ingredients of Natural Medicine."Langmuir. 2021;37(17):5321–5328 92. [IF=3.571] Suwen Liu et al."Lonicera caerulea Berry Polyphenols Activate SIRT1, Enhancing Inhibition of Raw264.7 Macrophage Foam Cell Formation and Promoting Cholesterol Efflux."J Agr Food Chem. 2019;67(25):7157–7166 93. [IF=3.205] Jie Tang et al."Metabolite profiling of Shuganzhi tablets in rats and pharmacokinetics study of four bioactive compounds with liquid chromatography combined with electrospray ionization tandem mass spectrometry."J Chromatogr B. 2021 Aug;1179:122827 94. [IF=2.354] Zhu Tong et al."Light radiation promoted stilbene accumulation in peanut sprouts: a response of the reestablishment of oxidant-antioxidant homeostasis."Acta Physiol Plant. 2021 Oct;43(10):1-14 95. [IF=2.082] Qin Guo et al."Synergistic inhibition effects of tea polyphenols as adjuvant of oxytetracycline on Vibrio parahaemolyticus and enhancement of Vibriosis resistance of Exopalaemon carinicauda."Aquac Res. 2021 Aug;52(8):3900-3910 96. [IF=2.081] Yu-An Hsu et al."Anti-Inflammatory Effects of Resveratrol on Human Retinal Pigment Cells and a Myopia Animal Model."Curr Issues Mol Biol. 2021 Sep;43(2):716-727 97. [IF=9.147] Xiaoge Zhang et al.Study on simultaneous binding of resveratrol and curcumin to β-lactoglobulin: Multi-spectroscopic, molecular docking and molecular dynamics simulation approaches.Food Hydrocolloid. 2022 Mar;124:107331 98. [IF=4.451] Suwen Liu et al."Castanea mollissima shell polyphenols regulate JAK2 and PPARγ expression to suppress inflammation and lipid accumulation by inhibiting M1 macrophages polarization."J Funct Foods. 2022 May;92:105046 99. [IF=4.411] Yuan Ma et al."Reflux Extraction Optimization and Antioxidant Activity of Phenolic Compounds from Pleioblastus amarus (Keng) Shell."Molecules. 2022 Jan;27(2):362 100. [IF=3.373] Yiyuan Luo et al."Quality evaluation of Tetrastigma hemsleyanum different parts based on quantitative analysis of 42 bioactive constituents combined with multivariate statistical analysis."PHYTOCHEMICAL ANALYSIS. 2022 Apr 05 101. [IF=5.82] Mingfang Tao et al."Vitexin and Isovitexin Act Through Inhibition of Insulin Receptor to Promote Longevity and Fitness in Caenorhabditis elegans."MOLECULAR NUTRITION & FOOD RESEARCH. 2022 Apr 12 |
白藜芦醇是一种天然抗氧化剂,可降低血液粘稠度,抑制血小板凝结和血管舒张,保持血液畅通,可预防癌症的发生及发展,具有抗动脉粥样硬化和冠心病,缺血性心脏病,高血脂的防治作用。抑制肿瘤的作用还具有雌激素样作用,可用于治疗乳腺癌等疾病。可以延缓衰老,预防癌症,在红葡萄皮、红葡萄酒和葡萄汁中含量很高。有研究表明,染色体的完整性会随着人类的衰老而遭到破坏,而白藜芦醇可以激活一种修复染色体健康的蛋白质sirtuin,从而起到延缓衰老的作用。
白藜芦醇是一种天然抗氧化剂,可降低血液粘稠度,抑制血小板凝结和血管舒张,保持血液畅通,可预防癌症的发生及发展,具有抗动脉粥样硬化和冠心病,缺血性心脏病,高血脂的防治作用。抑制肿瘤的作用还具有雌激素样作用,可用于治疗乳腺癌等疾病。可以延缓衰老,预防癌症,在红葡萄皮、红葡萄酒和葡萄汁中含量很高。有研究表明,染色体的完整性会随着人类的衰老而遭到破坏,而白藜芦醇可以激活一种修复染色体健康的蛋白质sirtuin,从而起到延缓衰老的作用。
白藜芦醇是很多芳香致癌物的氧化代谢酶类的一种抑制剂,被评为是心、脑血管疾病及癌症的天然化学预防剂。经大量研究表明,白藜芦醇还具有抗突变活性、保护由氧化脂蛋白诱导的细胞毒害作用、抑制肿瘤细胞的繁殖等功能。
1940年人类首次从毛叶藜芦Veratrum grandiflorum的根分离得到白藜芦醇,目前至少已经在21个科、31个属的72种植物中发现,如葡萄科的葡萄属、蛇葡萄属,豆科的落花生属、决明属、槐属,蓼科的蓼属等。由于白藜芦醇在植物中的含量很低,且提取成本高,所以利用化学、生物、基因工程等方法制得白藜芦醇已成为其开发过程中不可或缺的手段。
白藜芦醇是一种天然存在于葡萄和红酒、桑椹、花生和虎杖中的抗氧化剂,属于多酚类,易溶于有机溶剂,难溶于水,在有机溶剂种的溶解顺序为:丙酮>乙醇>甲醇>乙酸乙酯>乙醚>氯仿。
无味、白色粉末,完全溶解于乙醇。
白藜芦醇在市场的需求量极大,由于其在植物中的含量很低,并且提取成本高,所以利用化学方法合成白藜芦醇已成为其开发的主要手段。
以3,5-二异丙氧基苯甲醛和对异丙氧基苯乙酸为原料,利用Perkin反应首先合成了单一的顺式中间产物,然后再转化为单一的反式白藜芦醇,产率为55.2%。
利用Heck反应合成单一的反式白藜芦醇,产率达到70%以上,但关键中间体3,5一二乙酰氧基苯乙烯需经保护、Wittig反应、再保护三步反应方能获得。
卓广澜等以3,5一二羟基苯甲酸为原料,经甲基化、肼化、氧化反应得到中间体3,5一二甲氧基苯甲醛,与对甲氧基苄磷酸酯经Wittig—Homer缩合反应得到单一的反式3,4',5一三甲氧基芪,最后用BBr3/CH2C:脱去甲基保护基,合成得到白藜芦醇,产率为35.7%。
白藜芦醇是肿瘤疾病的化学预防剂,也是对降低血小板聚集,预防、治疗动脉粥样硬化,心脑血管疾病的化学预防剂。20世纪90年代,中国科技工作者对白藜芦醇的研究不断深入,并揭示其药理作用:抑制血小板非正常凝聚,预防心肌硬塞、脑栓塞,对缺氧心脏有保护作用,对烧伤或失血性休克引起的心输出量下降有效恢复,并能够扩张动脉血管及改善微循环。
反式白藜芦醇和顺式白藜芦醇都具有抗癌活性,其原因是它们可以抑制蛋白质- 酪氨酸激酶的活性。白藜芦醇在癌症发生的3个阶段即起始、 增进和发展过程中,都有较高的防癌活性, 且对癌症发生3个阶段都有抑制乃至逆转作用:一、抑制起始作用。减少自由基形成,诱导Ⅱ期药代酶增多,拮抗二恶英作用;二、抑制增进作用。抑制环氧合酶( COX ),抑制过氧化氢酶;三抑制发展作用。抑制癌细胞增殖,诱导癌细胞分化,诱导癌细胞凋亡。白藜芦醇可望作为酪氨酸蛋白激酶PTK的抑制剂,诸多医学研究发现白藜芦醇对乳腺癌、胃癌、结肠癌、前列腺癌、白血病、卵巢癌、皮肤癌等多种恶性肿瘤细胞均有明显的抑制作用。
白藜芦醇是存在于植物中的天然抗氧化剂,主要通过清除或抑制自由基生成,抑制脂质过氧化、调节抗氧化相关酶活性等机制发挥抗氧化作用。当白藜芦醇在1.3μg /mL时,能明显抑制大鼠红细胞的自氧化溶血和由H2O2 引起的氧化溶血,对小鼠心、 肝、 脑、 肾的体内外过氧化脂质的产生有明显的抑制作用。白藜芦醇的抗氧化、诱除自由基和影响花生四烯酸代谢的药理功能引起了人们的广泛兴趣,因为这些生理代谢涉及与人体健康密切相关的许多生理疾病,如动脉粥样硬化、老年痴呆症、 病毒性肝炎、 胃溃疡、 炎症与过敏反应等。
白藜芦醇对金黄色葡萄球菌、卡他球菌、大肠杆菌、绿脓杆菌有抑制作用,并对孤儿病毒、单纯疱疹病毒及肠道病毒和柯萨奇A、B组有较强的抑制作用。白藜芦醇通过减少血小板的黏附,在抗炎过程中改变血小板的活性达到抗炎。
因为白藜芦醇有着抗癌、抗氧化、抗炎、抗菌的作用而爱到人们的喜爱,植物来源中说到因为法国人常饮高脂肪物中含有白藜芦醇,所以法国人的冠心病发病率底于其它西方国家,从此信息中可得知白藜芦醇因为有效地压制高脂肪的防治作用。
某些人的身体免疫机制会对鸡蛋、小麦和牛奶等食物产生过敏反应,情况严重的会导致休克甚至死亡。日本研究人员在动物实验中发现,红葡萄酒中含量丰富的白藜芦醇能够预防这种食物过敏。
氧化应激在糖尿病肾病发生发展中起重要作用,多种抗氧化剂可延缓DN的发展。白藜芦醇可对抗氧化应激,从而改善早期DN的症状。白藜芦醇具有明显的抗氧化应激作用,可避免高糖、高脂诱导的氧化应激损伤,从而在糖尿病及其慢性并发症的防治中发挥重要作用,特别是在糖尿病早期阶段延缓DN的发展,保护肾脏组织。不过,尽管白藜芦醇是具有极大潜力的天然药物,但目前相关研究仅限于动物实验和细胞分子水平,临床应用相对较少,其临床应用前景有待进一步研究。
微信搜索化工百科或扫描下方二维码,添加化工百科小程序,随时随地查信息!