Molecular Formula | C15H14O7 |
Molar Mass | 306.27 |
Density | 1.695±0.06 g/cm3(Predicted) |
Melting Point | 218 °C(Solv: water (7732-18-5)) |
Boling Point | 685.6±55.0 °C(Predicted) |
Specific Rotation(α) | +14.7 (Me2CO aq.) |
Solubility | Water |
Appearance | Solid |
Color | White to Pale Brown |
pKa | 9.02±0.15(Predicted) |
Storage Condition | Hygroscopic, -20°C Freezer, Under inert atmosphere |
Stability | Hygroscopic |
Physical and Chemical Properties | White crystalline powder, soluble in methanol, ethanol, DMSO and other organic solvents, derived from green tea. |
Reference Show more | 1. Wang, Zhineng, et al. "Comparison of the phenolic profiles and physicochemical properties of different varieties of thermally processed canned lychee pulp." RSC Advances 10.12 (2020): 6743-6751.10.1039/C9RA08393F 2. Yu, Penghui, et al. "Distinct variation in taste quality of Congou black tea during a single spring season." Food science & nutrition 8.4 (2020): 1848-1856.https://doi.org/10.1002/fsn3.1467 3. Liu, Shuyuan, et al. "Effect of steeping temperature on antioxidant and inhibitory activities of green tea extracts against α-amylase, α-glucosidase and intestinal glucose uptake." Food chemistry 234 (2017): 168-173.https://doi.org/10.1016/j.foodchem.2017. 4. Liu, Shuyuan, et al. "Effect of steeping temperature on antioxidant and inhibitory activities of green tea extracts against α-amylase, α-glucosidase and intestinal glucose uptake." Food chemistry 234 (2017): 168-173.https://doi.org/10.1016/j.foodchem.2017. 5. Liu, Shuyuan, et al. "Effect of steeping temperature on antioxidant and inhibitory activities of green tea extracts against α-amylase, α-glucosidase and intestinal glucose uptake." Food chemistry 234 (2017): 168-173.https://doi.org/10.1016/j.foodchem.2017. 6. Liao, Yinyin, et al. "Effect of major tea insect attack on formation of quality-related nonvolatile specialized metabolites in tea (Camellia sinensis) leaves." Journal of agricultural and food chemistry 67.24 (2019): 6716-6724.https://doi.org/10.1021/acs.j 7. [IF=3.659] Liu Shuyuan et al."In vitro α-glucosidase inhibitory activity of isolated fractions from water extract of Qingzhuan dark tea."Bmc Complem Altern M. 2016 Dec;16(1):1-8 8. [IF=2.769] Guobin Xia et al."Tannase-mediated biotransformation assisted separation and purification of theaflavin and epigallocatechin by high speed counter current chromatography and preparative high performance liquid chromatography: A comparative study."Microsc 9. [IF=5.81] Mu Jianfei et al."Determination of Polyphenols in Ilex kudingcha and Insect Tea (Leaves Altered by Animals) by Ultra-high-performance Liquid Chromatography-Triple Quadrupole Mass Spectrometry (UHPLC-QqQ-MS) and Comparison of Their Anti-Aging Effects."Fro 10. [IF=5.279] Yinyin Liao et al."Effect of Major Tea Insect Attack on Formation of Quality-Related Nonvolatile Specialized Metabolites in Tea (Camellia sinensis) Leaves."J Agr Food Chem. 2019;67(24):6716–6724 11. [IF=5.279] Huan Zhang et al."Metabolite and Microbiome Profilings of Pickled Tea Elucidate the Role of Anaerobic Fermentation in Promoting High Levels of Gallic Acid Accumulation."J Agr Food Chem. 2020;68(47):13751–13759 12. [IF=4.952] Shuxin Tang et al."Effect of Lactobacillus plantarum-fermented mulberry pomace on antioxidant properties and fecal microbial community."Lwt Food Sci Technol. 2021 Jul;147:111651 13. [IF=4.952] Fengfeng Qu et al."The new insight into the influence of fermentation temperature on quality and bioactivities of black tea."Lwt Food Sci Technol. 2020 Jan;117:108646 14. [IF=2.896] Li Wang et al."Separation of epigallocatechin gallate and epicatechin gallate from tea polyphenols by macroporous resin and crystallization."Anal Methods-Uk. 2021 Feb;13(6):832-842 15. [IF=4.411] Peng-Cheng Zheng et al.Untargeted Metabolomics Combined with Bioassay Reveals the Change in Critical Bioactive Compounds during the Processing of Qingzhuan Tea.Molecules. 2021 Jan;26(21):6718 16. [IF=6.576] Guowei Man et al."Profiling Phenolic Composition in Pomegranate Peel From Nine Selected Cultivars Using UHPLC-QTOF-MS and UPLC-QQQ-MS."Front Nutr. 2021; 8: 807447 17. [IF=7.514] YueTong Yu et al."Identification and Quantification of Oligomeric Proanthocyanidins, Alkaloids, and Flavonoids in Lotus Seeds: A Potentially Rich Source of Bioactive Compounds."Food Chem. 2022 Jan;:132124 |
Plant Source: | tea |
biological activity | ( )-Gallocatechin is a source of green tea polyphenols, with anticancer activity. |
Use | catechin gallate has the effects of scavenging free radicals, inhibiting tumor, anti-mutation, anti-virus, lowering lipid and promoting digestion. for content determination/identification/pharmacological experiments. Pharmacological effects: tea substances with free radical scavenging, tumor inhibition, anti-mutagenic, antiviral, lipid-lowering digestion, skin care and beauty and other biological activities. |