中文名 | 5-羟甲基糠醛 |
英文名 | 5-Hydroxymethylfurfural |
别名 | 羟甲基糠醛 5-羟甲基糠醛 5-羟基甲基呋喃甲醛 5-羟甲基-2-呋喃甲醛,5-羟甲基-2-糠醛,5- 4度冷藏,5-羟甲-2-呋喃甲醛,5-羟甲-2-糠醛,5-羟基甲基呋喃甲醛 5-HYDROXYMETHYL-2-FURALDEHYDE 5-羟甲基糠醛 羟甲基-2-呋喃甲醛,5-羟基甲基糠醛,5-羟基甲基呋喃甲醛,5-羟甲基糠醛 5-羟甲基糠醛(5-羟甲基-2-呋喃甲醛,5-羟甲基-2-糠醛,5-(羟甲基)-2-呋喃甲醛,5-羟基甲基糠醛,5-羟基甲基呋喃甲醛,5-羟甲基糠醛(4度冷藏),5-羟甲-2-呋喃甲醛,5-羟甲-2-糠醛,5-羟基甲基呋喃甲醛) |
英文别名 | HMF 5-HMF TIMTEC-BB SBB004259 5-Hydroxymethylfurfural 5-(Hydroxymethyl)furfural Hydroxymethylfurfuralaldehyde 5-Hydroxymethyl-2-furaldehyde 5-(Hydroxymethyl)-2-furaldehyde 5-(hydroxymethyl)furan-2-carbaldehyde 5-Hydroxymethyl-2-furaldehyde (stabilized with Water) 5-(Hydroxymethyl)furfural, 5-Hydroxymethyl-2-furancarboxaldehyde 5-(Hydroxymethyl)furfural, 5-Hydroxymethyl-2-furaldehyde, 5-Hydroxymethyl-2-furancarboxaldehyde |
CAS | 67-47-0 |
EINECS | 200-654-9 |
化学式 | C6H6O3 |
分子量 | 126.11 |
InChI | InChI=1/C6H6O3/c7-3-5-1-2-6(4-8)9-5/h1-3,8H,4H2 |
InChIKey | NOEGNKMFWQHSLB-UHFFFAOYSA-N |
密度 | 1.243 g/mL at 25 °C (lit.) |
熔点 | 28-34 °C (lit.)28-34 °C (lit.) |
沸点 | 114-116 °C/1 mmHg (lit.) |
闪点 | 175°F |
水溶性 | Soluble in water, alcohol, ethyl acetate, acetone, dimethylformamide, benzene, ether and chloroform. |
蒸汽压 | 0.000891mmHg at 25°C |
溶解度 | 氯仿 (微溶) 、乙酸乙酯 (微溶) 、甲醇 (微溶) |
折射率 | n20/D 1.562(lit.) |
酸度系数 | 12.82±0.10(Predicted) |
存储条件 | 2-8°C |
稳定性 | 对光敏感,非常吸湿 |
敏感性 | Air & Light Sensitive |
外观 | 液体或结晶粉末和/或块 |
颜色 | Light yellow to yellow |
Merck | 14,4832 |
BRN | 110889 |
物化性质 | 淡黄色蜡状,易溶于甲醇乙醇,来源于山茱萸,葡萄糖(d-glucose)含量很高。 |
MDL号 | MFCD00003234 |
危险品标志 | Xi - 刺激性物品 |
风险术语 | R36/37/38 - 刺激眼睛、呼吸系统和皮肤。 R52/53 - |
安全术语 | S26 - 不慎与眼睛接触后,请立即用大量清水冲洗并征求医生意见。 S36 - 穿戴适当的防护服。 S24/25 - 避免与皮肤和眼睛接触。 |
WGK Germany | 2 |
RTECS | LT7031100 |
FLUKA BRAND F CODES | 8-10 |
TSCA | Yes |
海关编号 | 29321900 |
上游原料 | 5-乙氧甲基糠醛 |
下游产品 | 2,5-呋喃二甲醇 2,5-呋喃二甲酸 2.5-二甲基四氢呋喃 呋喃 |
参考资料 展开查看 | 1. 唐凯 南美娟 张化为 等. HPLC法同时测定不同产地山茱萸果核中4种成分[J]. 中成药 2020 v.42(03):124-129. 2. 周菲 李杰 何瑶 母瑞靖 傅超美.HPLC法同时测定四物汤中8个成分及其在水提醇沉过程中的传递[J].药物分析杂志 2019 39(06):983-991. 3. 林世和 柯常胜 徐海星 等. HPLC法同时测定大黄炭中没食子酸和5-羟甲基糠醛的含量[J]. 中国药师 2019(6). 4. 马佳丽 蒋殷盈 蒋福升 等. 九蒸九制多花黄精炮制过程变化研究[J]. 浙江中医药大学学报 2020 044(005):480-485. 5. 蔡新杰, 徐海星, 林世和,等. 大黄炒炭后新生物质的分离鉴定和生成变化规律[J]. 中国医院药学杂志, 2018, 038(022):2336-2339. 6. 刘畅, 宫瑞泽, 张磊,等. 山楂不同炮制方法对5-羟甲基糠醛含量及抗氧化活性的影响[J]. 特产研究, 2019(4). 7. 刘佳鑫, 李古月, 才谦. 苍术麸炒后增量成分研究. 中国医药导报, 2014. 8. 张棋, 易军鹏, 李欣,等. 蒸汽爆破预处理对粉葛总黄酮及抗氧化性的影响[J]. 食品科学, 2016, v.37;No.526(09):40-44. 9. 胡贝, 李冰, 陈穗,等. 酱油生产过程中游离态羧甲基赖氨酸和5-羟甲基糠醛的同步检测[J]. 食品科技, 2019, v.44;No.334(08):299-305. 10. 宫瑞泽, 王燕华, 赵卉,等. 鹿茸加工过程中5-羟甲基糠醛的产生及影响因素探讨[J]. 中草药, 2018, 49(014):3270-3278. 11. 鲁静, 陈天朝, 马彦江,等. 炮制对山茱萸有效成分含量的影响[J]. 中医药信息, 2020, v.37;No.212(02):49-52. 12. 纪鑫, 刘晓谦, 肖苏萍,等. 女贞子中非三萜类成分的定性定量研究[J]. 中国中药杂志, 2019, 044(008):1615-1622. 13. 马彦江, 陈天朝, 鲁静,等. 均匀设计法优选山茱萸九蒸九晒炮制工艺[J]. 中医药信息, 2020, 037(003):17-21. 14. 刘亮镜, 徐斌, 张强. 白芍炮制过程中的美拉德反应及芍药苷的变化[J]. 中华中医药学刊, 2020, v.38(03):82-85+272. 15. 刘真 朱丽霞.5-羟甲基糠醛、糠醛、乙酰呋喃、呋喃酮、5-甲基糠醛的高效液相检测方法[J].食品研究与开发 2019 40(18):166-170. 16. 郑梅, 刘富垒, 薛敬伟,等. 基于肝微粒体和指纹图谱研究六味地黄丸与硝苯地平的药物相互作用[J]. 中国药科大学学报, 2018, 49(02):70-76. 17. 牛晓静, 鲁静, 马彦江,等. 基于多指标总评归一法优选槐角炮制工艺[J]. 中华中医药学刊, 2019, v.37(11):59-62. 18. 林羡, 徐玉娟, 肖更生,等. 干燥方式对辣木叶营养活性成分、抗氧化活性及色泽的影响[J]. 热带作物学报, 2018, 039(012):2465-2472. 19. Gao, Lin, et al. "Original Paper Investigation of Processing Technology for Aged Black Jujube." Food Science and Nutrition 3.4 (2019).ttp://dx.doi.org/10.22158/fsns.v3n4p107 20. Jiao Wu, Yun Duan, Zhaoyin Gao, Xinfeng Yang, Dongxiang Zhao, Jinglin Gao, Wensu Han, Guosheng Li, Shijie Wang, Quality comparison of multifloral honeys produced by Apis cerana cerana, Apis dorsata and Lepidotrigona flavibasis, LWT, Volume 134, 2020, 11022 21. Zhou, Zhisheng, et al. "Exploring the binding interaction of Maillard reaction by‐product 5‐hydroxymethyl‐2‐furaldehyde with calf thymus DNA." Journal of the Science of Food and Agriculture 99.6 (2019): 3192-3202.https://doi.org/10.1002/jsfa.9536 22. Zhou, Jing, et al. "A strategy for rapid discovery of traceable chemical markers in herbal products using MZmine 2 data processing toolbox: A case of Jing Liqueur." Chinese Herbal Medicines (2021). 23. [IF=3.638] Zhisheng Zhou et al."Exploring the binding interaction of Maillard reaction by-product 5-hydroxymethyl-2-furaldehyde with calf thymus DNA."J Sci Food Agr. 2019 Apr;99(6):3192-3202 24. [IF=9.381] Jun Zhang et al."Inhibition of Maillard reaction in production of low-molecular-weight chitosan by enzymatic hydrolysis."Carbohyd Polym. 2020 May;236:116059 25. [IF=7.514] Li Yang et al."Color-reflected chemical regulations of the scorched rhubarb (Rhei Radix et Rhizoma) revealed by the integration analysis of visible spectrophotometry, Fourier transform infrared spectroscopy and high performance liquid chromatography."Food 26. [IF=7.514] Balarabe B. Ismail et al."High-intensity ultrasound processing of baobab fruit pulp: Effect on quality, bioactive compounds, and inhibitory potential on the activity of α-amylase and α-glucosidase."Food Chem. 2021 Nov;361:130144 27. [IF=5.396] Binkai Han et al."Ultrasound-assisted enzymatic extraction of Corni Fructus alpha-glucosidase inhibitors improves insulin resistance in HepG2 cells."Food Funct. 2021 Oct;12(20):9808-9819 28. [IF=5.396] Xie Xing et al."Influence of Sargassum pallidum and the synergistic interaction mechanism of 6-gingerol and poricoic acid A on inhibiting ovalbumin glycation."Food Funct. 2021 Oct;12(19):9315-9326 29. [IF=5.396] Xie Xing et al."Investigation into the mechanisms of quercetin-3-O-glucuronide inhibiting α-glucosidase activity and non-enzymatic glycation by spectroscopy and molecular docking."Food Funct. 2021 Aug;12(17):7825-7835 30. [IF=4.952] Jiao Wu et al."Quality comparison of multifloral honeys produced by Apis cerana cerana, Apis dorsata and Lepidotrigona flavibasis."Lwt Food Sci Technol. 2020 Dec;134:110225 31. [IF=4.952] Zhichang Qiu et al."Characterization of the growth properties of garlic endophytes and their roles in the formation of black garlic."Lwt Food Sci Technol. 2021 Jul;147:111537 32. [IF=4.142] Wang Chenxi et al."Systematic quality evaluation of Peiyuan Tongnao capsule by offline two-dimensional liquid chromatography/quadrupole-Orbitrap mass spectrometry and adjusted parallel reaction monitoring of quality markers."Anal Bioanal Chem. 2019 Nov;4 33. [IF=3.196] Li Yang et al."Cascading chemical transitions of rhubarb (Rhei Radix et Rhizoma) during the scorching process revealed by heated ATR-FTIR spectroscopy and two-dimensional correlation analysis."J Mol Struct. 2020 Sep;1216:128307 34. [IF=2.629] Hu Jing et al."Chemometric Analyses for the Characterization of Raw and Stir-Frying Processed Drynariae Rhizoma Based on HPLC Fingerprints."Evid-Based Compl Alt. 2021;2021:6651657 35. [IF=1.645] Si-qi Wang et al."Study on the Changes of Chemical Constituents in Different Compatibilities of Ginseng-Prepared Rehmannia Root and Their Effects on Bone Marrow Inhibition after Chemotherapy."Chemical & Pharmaceutical Bulletin. 2020 Mar 17 36. [IF=3.645] Jingbin Chen et al.Screening for potential quality markers of Callerya nitida var. hirsutissima. Z.Wei based on components profile, pharmacokinetics, and anti-inflammatory study.Journal Of Separation Science.2021 Nov 02 37. [IF=3.645] Yu Zhang et al."Qualitative and quantitative analysis of Alpiniae Oxyphyllae fructus by HPLC coupled to Fourier transform-ion cyclotron resonance mass spectrometry."Journal Of Separation Science. 2022 Jan 11 38. [IF=4.098] Le Yang et al."Two-dimensional correlation spectroscopy indicates the infrared spectral markers of the optimum scorching degree of rhubarb (Rhei Radix et Rhizoma) to enhance the anti-inflammatory activity."Spectrochim Acta A. 2022 Apr;270:120853 |
微信搜索化工百科或扫描下方二维码,添加化工百科小程序,随时随地查信息!