木糖为五碳糖,在开链式醛式结构与争环氧式半缩醛结构之间存在动态平衡,因而存在变旋光现象。比旋光度[alDo为+18.6。~+92。。木糖为无色或白色结晶,或白色结晶性粉末,略有特殊
气味和爽口甜味。易溶于水和热乙醇,不溶于乙醇、乙醚,相对密度为1. 525,熔点144℃,甜度约为蔗糖的40%,人体不能消化吸收。
木糖广泛存在于植物中,如蔗渣、油茶壳、玉米芯和稻壳等,以上农副产品中大多含有丰富的纤维素、半纤维素和木质素,纤维素和半纤维素经水解可转化为相应的糖类,溶解于水,成为混合糖溶液,溶液再经精制、浓缩、加氢等处理后可得到糖醇,半纤维素中的多缩戊糖,在水解时分子中苷键断裂,与水分子结合可生成木糖,木质素在水解过程中无变化可沉淀除去,用来造纸或另作他用。通常的制备方法有中和法、离子交换脱酸法、电渗析脱酸法、结晶法、连续水解层析分离法等。其中中和法与离子交换脱酸法是成熟的工艺路线。1、中和法。2、离子交换脱酸法。
为无热量甜味剂,适用于肥胖症患者和糖尿病患者,也是制酱色的原料及香料原料。
中文名 | D(+)-木糖 |
英文名 | D(+)-Xylose |
别名 | D-木糖 D(+)-木糖 D-木糖(木糖) D(+)木糖,戊醛糖,木质醛糖,五碳醛糖 D-(+)-XYLOSE D-(+)-木糖 木糖(木质醛糖,戊醛糖,D-戊醛糖,D(+)木质醛糖,戊醣,D-(+)-木糖,五碳醛糖) |
英文别名 | D-XYL XYLOSE XYLOSE-D D-Xylose HSDB 3273 FEMA 3606 WOOD SUGAR (+)-Xylose CCRIS 1899 D(+)-Xylose BRN 1562108 FEMA No. 3606 XYLOSE, D-(+)- D-xylopyranose D-XYLOPYRANOSE UNII-A1TA934AKO D-(+)-WOOD SUGAR beta-D-xylopyranose alpha-D-xylopyranose 2,3,4,5-Tetrahydroxypentanal 4-01-00-04223 (Beilstein Handbook Reference) |
CAS | 58-86-6 133-56-2 141492-19-5 |
EINECS | 200-400-7 |
化学式 | C5H10O5 |
分子量 | 150.13 |
InChI | InChI=1/C5H10O5/c6-1-3(8)5(10)4(9)2-7/h1,3-5,7-10H,2H2/t3-,4+,5+/m0/s1 |
密度 | 1.525 |
熔点 | 154-158°C(lit.) |
沸点 | 191.65°C (rough estimate) |
比旋光度 | 20 º (c=10, H2O) |
闪点 | > 100°(212°F) |
水溶性 | soluble |
蒸汽压 | 1.22E-08mmHg at 25°C |
溶解度 | H2O: 1m在20 °C,澄清,无色 |
折射率 | 20 ° (C=10, H2O) |
酸度系数 | pKa (18°): 12.14 |
PH值 | 4.0-6.0 (25℃, 1M in H2O) |
存储条件 | Sealed in dry,Room Temperature |
稳定性 | 稳定。与强氧化剂不相容。 |
敏感性 | Hygroscopic |
外观 | 细结晶粉末 |
比重 | 1.535 |
颜色 | White |
气味 | Odorless |
最大波长(λmax) | ['λ: 260 nm Amax: 0.05', , 'λ: 280 nm Amax: 0.05'] |
Merck | 14,10087 |
BRN | 1562108 |
物化性质 | 无色至白色结晶或白色结晶性粉末,略有特殊气味和爽口甜味。甜度约为蔗糖的40%。相对密度1.525,熔点114℃,呈右旋光性和变旋光性,比旋光度[α]D20+92°~+18.6°。易溶于水(125g/100m1)和热乙醇,不溶于乙醇和乙醚。人体无法消化,不能利用。天然品存在于多种成熟水果中。 |
MDL号 | MFCD00064360 |
危险品标志 | Xi - 刺激性物品 |
风险术语 | 36/37/38 - 刺激眼睛、呼吸系统和皮肤。 |
安全术语 | S24/25 - 避免与皮肤和眼睛接触。 S36 - 穿戴适当的防护服。 S26 - 不慎与眼睛接触后,请立即用大量清水冲洗并征求医生意见。 |
WGK Germany | 2 |
RTECS | ZF2285000 |
FLUKA BRAND F CODES | 3 |
TSCA | Yes |
海关编号 | 29400090 |
Hazard Note | Irritant |
上游原料 | 纯碱 碳 硫酸 |
下游产品 | 木糖醇 |
参考资料 展开查看 | 1. 赵优琴, 任强强, 张小琴,等. 复方三维右旋泛酸钙糖浆对脾虚型功能性消化不良大鼠的影响[J]. 药学研究, 2019, 038(002):80-83. 2. 王慧娟, 乔杨, 晏薇娜,等. 太子参多糖的提取纯化及其单糖组分的鉴定[J]. 贵州大学学报(自然科学版), 2017(34):25-29. 3. 吴悦,潘丽军,李兴江,姜绍通.寄生曲霉CICC40365利用木糖产L-苹果酸的发酵条件优化[J].微生物学通报,2014,41(06):1052-1062. 4. 徐浩,林琳,刘东旭,陆剑锋,姜绍通.河蚬酶解物美拉德反应产物抗氧化活性研究[J].现代食品科技,2019,35(01):189-197. 5. 刘佳, 王桂瑛, 程志斌,等. 火腿与白牛肝菌复合风味基料工艺研究[J]. 食品工业科技, 2016(23):243-246. 6. 徐慢, 张晓鸣. 谷氨酸—木糖美拉德中间体的水相制备及其在桃酥中的应用[J]. 食品与机械, 2019(4):7-13. 7. 张四杰, 钱正, 刘京晶,等. 铁皮石斛花多糖相对分子质量及其单糖组成的研究[J]. 中国中药杂志, 2017, 42(020):3919-3925. 8. 周张涛 袁博 王志荣 等. 不同还原糖对浓香葵花籽油风味的影响[J]. 食品工业 2019(7). 9. 余自琳 郭荣灿 姜毅 等. pH对墨鱼酶解物美拉德反应产物风味的影响[J]. 食品工业科技 2018 v.39;No.407(15):274-280. 10. 刘佳, 王桂瑛, 程志斌,等. 增香热反应制备白牛肝菌风味基料[J]. 食品工业, 2017, 038(006):208-213. 11. 刘佳,王优,王桂英,程志斌,谷大海,范江平,葛长荣,廖国周.美拉德增香反应制备宣威火腿风味基料研究[J].安徽农业科学,2016,44(35):113-115+153. 12. 周送桂, 李欣, 李中改,等. 金英黄归汤的工艺改进对总多糖含量的影响[J]. 中国实验方剂学杂志, 2016, 022(008):65-68. 13. 李娅, 刘京晶, 张新凤,等. 铁皮石斛非淀粉多糖含量测定方法的研究[J]. 中国中药杂志 2019年44卷15期, 3221-3225页, MEDLINE ISTIC PKU CSCD CA BP, 2019. 14. 王园 吴梦琪 张文清 等. HPLC结合化学计量学的枸杞多糖指纹图谱研究[J]. 中药材 2019年42卷7期 1572-1577页 MEDLINE ISTIC PKU 2020. 15. 赵文红, 许慧颖, 陈晖,等. 高聚合度麦麸阿魏酸糖酯的组成特征及其自由基清除能力研究[J]. 河南工业大学学报(自然科学版), 2018, 39(05):18-23+81. 16. 李利红 李凯 李向辉 等. 刺五加多糖的提取工艺研究[J]. 饲料研究 2019 v.42;No.493(06):119-122. 17. 汪兴杰,张予林,刘吉彬,陶永胜.基于氨基柱的高效液相色谱-示差折光检测器方法分析媚丽葡萄香气糖苷的糖基组成[J].分析化学,2017,45(05):681-686. 18. 韩鹏飞,虞佐嗣,郭建忠,李兵,刘力.炭基固体酸催化水解木聚糖制备低聚木糖的工艺优化[J].食品科学,2017,38(12):171-176. 19. 张,周尚儒,燕玉奎,郭玫.红芪多糖HG-2含量及联合透明质酸水凝胶的参数测定[J].解放军药学学报,2018,34(06):487-490. 20. 屈义,周斯仪,钟赛意,谌素华,苏伟明,吴小禾.鳙鱼鱼鳔黏多糖的提取及其抗氧化性活性评价[J].广东海洋大学学报,2018,38(01):47-53. 21. 张灿, 孙梦洋, 胡凯,等. 黑白两种糯米米糠可溶性膳食纤维的特性及对淀粉体外消化吸收的影响[J]. 华中农业大学学报, 2017(5). 22. 张守军, 王荣申, 刘兵,等. 柱前衍生化HPLC法测定香椿子多糖的单糖组成[J]. 山东化工, 2015, 44(017):71-73. 23. 腾飞, 郑悦, 王萍. 龙葵果花色苷的分离与鉴定[J]. 食品科学, 2016, 37(07):56-61. 24. 田有秋, 贾金霞, 束旭,等. 淡红侧耳子实体多糖的分离纯化及结构探析[J]. 食品与发酵工业, 2018, v.44;No.372(12):70-76. 25. 罗敏, 陈德经, 季晓辉. 米胚多糖的组成及抗氧化性研究[J]. 天然产物研究与开发, 2018, v.30(06):13-19+25. 26. 严薇,邓丽莎,王燕,刘强,刘兵,陶婷婷,刘珏,丁超.基于红外辐射处理的米糠多糖组分、提取率及抗氧化活性的影响[J].食品科学,2020,41(15):158-163. 27. 王晓琴, 冀晓龙, 彭强,等. 木枣多糖ZJP2的初步结构特征及抗氧化活性研究[J]. 现代食品科技, 2016, v.32;No.200(04):100-105. 28. 丽萍 张志红 吴素蕊 等. 人工培养冬虫夏草胞外多糖的分离纯化及组成分析[J]. 食品工业科技 2016 37(010):127-131. 29. 牛放 高俊明 段雪薇 等. 响应面法优化野菊花多糖的水解工艺[J]. 食品工业科技 2019 040(001):156-161. 30. 张亚丽, 高简, 苗祥贞,等. 黄连多糖中单糖组成的HPLC-MSn法快速识别[J]. 世界中医药, 2017(11):244-247. 31. 陈懿瑶 罗阳 闫燊 等. HPAEC-PAD法测定石斛属植物单糖组分与主成分聚类分析[J]. 中国实验方剂学杂志 2018(15). 32. 韩苗苗,姚娟,易阳,黄菲,王丽梅.龙眼果肉干燥过程中多糖的理化特征与活性变化规律[J].食品科学,2017,38(21):67-73. 33. 刘瑶, 王新然, 赵悦,等. 荞麦皮多糖组成及其抗氧化特性分析[J]. 食品与发酵工业, 2019(13). 34. 梁宇庭, 周骏辉, 南铁贵,等. 柱前衍生化UPLC-MS/MS测定12种单糖含量的方法学研究及其应用[J]. 中国中药杂志, 2018, 43(22):111-115. 35. 田蕾,李恩源,关统伟,唐蜀昆,刘晓飞,张小平.艾丁湖可培养嗜盐菌多样性及功能酶、抗菌活性筛选[J].微生物学通报,2017,44(11):2575-2587. 36. 张毅靖,甘剑峰,王永福,何国栋,吴映秀,唐洪梅.健脾祛湿膏对大鼠胃肠功能的调节作用[J].中成药,2021,43(01):191-195. 37. 冯峰,杨淑玲,张奇,吴岩斌.霸王花不同部位粗多糖的结构组成及体外抗氧化活性[J].中国现代应用药学,2021,38(02):189-195. 38. 白利琴,杨新,李冲,李研东,肖妙,郝建雄,赵丹丹,刘璐,李晟霖,韩雪.雪燕营养成分分析及抗氧化活性评价[J].食品研究与开发,2021,42(02):18-25. 39. 贤能,万鹏,赵瑞芝,胡巧红.醋柴胡多糖VBCP-3的结构和抗炎作用研究[J].动物医学进展,2021,42(04):59-63. 40. 李怡欣,张盟雨,王颂,王静,张应中,谢桂军,李兴伟.高效液相色谱法测定油茶饼粕多糖组成[J].中国油脂,2020,45(12):126-131+136. 41. 晨业,包晓玮,王娟,何梦梦,曾兰君,张亚涛.沙棘多糖分离纯化及抗氧化活性[J].食品科学,2021,42(04):227-232. 42. 陈开琼,杨其芳,苟琪,吕燕,刘建利.枸杞枝叶中乳酸菌的分离及其在徒长枝青贮中的应用评价[J].中国农业科技导报,2021,23(02):193-201. 43. 杨燕敏,郑振佳,高琳,张砚垒,张仁堂.红枣多糖超声波提取、结构表征及抗氧化活性评价[J].食品与发酵工业,2021,47(05):120-126. 44. Minmin Ai, Nan Xiao, Aimin Jiang, Molecular structural modification of duck egg white protein conjugates with monosaccharides for improving emulsifying capacity, Food Hydrocolloids, Volume 111, 2021, 106271, ISSN 0268-005X, https://doi.org/10.1016/j.foodhy 45. Xu, Danping, et al. "Extraction, purification and antioxidant activity of polysaccharide from cold pressed oil cake of ‘Tengjiao’seed." International Journal of Biological Macromolecules 163 (2020): 508-518.https://doi.org/10.1016/j.ijbiomac.2020.06.207 46. Xinru Xu, Mingguang Yu, Junaid Raza, Huanlu Song, Lin Gong, Wenqing Pan, Study of the mechanism of flavor compounds formed via taste-active peptides in bovine bone protein extract, LWT, Volume 137, 2021, 110371, ISSN 0023-6438, https://doi.org/10.1016/j.lw 47. Zou, Man, et al. "Immunomodulatory acidic polysaccharides from Zizyphus jujuba cv. Huizao: Insights into their chemical characteristics and modes of action." Food chemistry 258 (2018): 35-42.https://doi.org/10.1016/j.foodchem.2018.03.052 48. Qiu, Kuncheng, et al. "Study on extraction methods of polysaccharides from a processed product of Aconitum carmichaeli Debx." RSC Advances 11.35 (2021): 21259-21268.https://doi.org/10.1039/D1RA03628A 49. Bingwu Liao, Chunhui Zhou, Tingting Liu, Yangyan Dai, Huihua Huang,A novel Hericium erinaceus polysaccharide: Structural characterization and prevention of H2O2-induced oxidative damage in GES-1 cells,International Journal of Biological Macromolecules,V 50. Li, X., Guo, Y., Zhuang, Y., Qin, Y. and Sun, L. (2018), Nonvolatile taste components, nutritional values, bioactive compounds and antioxidant activities of three wild Chanterelle mushrooms. Int J Food Sci Technol, 53: 1855-1864. https://doi.org/10.1111/ij 51. Jia, Kaiying, et al. "Characterization of novel exopolysaccharide of Enterococcus faecium WEFA23 from infant and demonstration of its in vitro biological properties." International journal of biological macromolecules 128 (2019): 710-717.https://doi.org/10 52. Jia, Kaiying, et al. "Characterization of novel exopolysaccharide of Enterococcus faecium WEFA23 from infant and demonstration of its in vitro biological properties." International journal of biological macromolecules 128 (2019): 710-717.https://doi.org/10 53. [IF=9.381] Wenbo Chen et al."Two novel polysaccharides from the torus of Saussurea laniceps protect against AAPH-induced oxidative damage in human erythrocytes."Carbohyd Polym. 2018 Nov;200:446 54. [IF=9.381] Xinxin Liu et al."Purification of an acidic polysaccharide from Suaeda salsa plant and its anti-tumor activity by activating mitochondrial pathway in MCF-7 cells."Carbohyd Polym. 2019 Jul;215:99 55. [IF=7.514] Man Zou et al."Immunomodulatory acidic polysaccharides from Zizyphus jujuba cv. Huizao: Insights into their chemical characteristics and modes of action."Food Chem. 2018 Aug;258:35 56. [IF=7.514] Ting Hu et al."A hyperbranched β-d-glucan with compact coil conformation from Lignosus rhinocerotis sclerotia."Food Chem. 2017 Jun;225:267 57. [IF=6.953] Kaiying Jia et al."Characterization of novel exopolysaccharide of Enterococcus faecium WEFA23 from infant and demonstration of its in vitro biological properties."Int J Biol Macromol. 2019 May;128:710 58. [IF=6.953] Ting Hu et al."Structure, molecular conformation, and immunomodulatory activity of four polysaccharide fractions from Lignosus rhinocerotis sclerotia."Int J Biol Macromol. 2017 Jan;94:423 59. [IF=5.645] Ailian Zhang et al."Polysaccharide and crocin contents, and antioxidant activity of saffron from different origins."Ind Crop Prod. 2019 Jul;133:111 60. [IF=4.171] Fangfang Wu et al."Structure characterization of a novel polysaccharide from Hericium erinaceus fruiting bodies and its immunomodulatory activities."Food Funct. 2018 Jan;9(1):294-306 61. [IF=4.072] Xiao-Ke Zheng et al."Phenolic constituents from the root bark of Morus alba L. and their cardioprotective activity in vitro."Phytochemistry. 2017 Mar;135:128 62. [IF=3.935] Meilian Wang et al."Natural deep eutectic solvents as eco-friendly and sustainable dilution medium for the determination of residual organic solvents in pharmaceuticals with static headspace-gas chromatography."J Pharmaceut Biomed. 2018 Sep;158:262 63. [IF=3.197] Fangfang Wu et al."Structural characterization of a novel polysaccharide fraction from Hericium erinaceus and its signaling pathways involved in macrophage immunomodulatory activity."J Funct Foods. 2017 Oct;37:574 64. [IF=10.618] Tao Chen et al."A molecularly imprinted nanoreactor with spatially confined effect fabricated with nano-caged cascaded enzymatic system for specific detection of monosaccharides."Biosens Bioelectron. 2021 Sep;188:113355 65. [IF=9.381] Zhen Lin et al."Effects of a sulfated glycosaminoglycan from Sepia esculenta ink on transcriptional and metabolic profiles of Saccharomyces cerevisiae."Carbohyd Polym. 2022 Jan;276:118715 66. [IF=9.381] Wenbo Chen et al."Structural Elucidation of a Novel Pectin-Polysaccharide from the Petal of Saussurea laniceps and the Mechanism of its Anti-HBV Activity."Carbohyd Polym. 2019 Nov;223:115077 67. [IF=9.381] Qianwen Xiong et al."Structural characterization and evaluation the elicitors activity of polysaccharides from Chrysanthemum indicum."Carbohyd Polym. 2021 Jul;263:117994 68. [IF=9.381] Fanke Zeng et al."Structural characterization of polysaccharides with potential antioxidant and immunomodulatory activities from Chinese water chestnut peels."Carbohyd Polym. 2020 Oct;246:116551 69. [IF=9.381] Ya Zhao et al."Polysaccharide from vinegar baked radix bupleuri as efficient solubilizer for water-insoluble drugs of Chinese medicine."Carbohyd Polym. 2020 Feb;229:115473 70. [IF=9.381] Yanmin Yang et al."Structural characterization and antioxidant activities of one neutral polysaccharide and three acid polysaccharides from Ziziphus jujuba cv. Hamidazao: A comparison."Carbohyd Polym. 2021 Jun;261:117879 71. [IF=9.147] Xin Pan et al."Physicochemical and structural properties of three pectin fractions from muskmelon (Cucumis melo) and their correlation with juice cloud stability."Food Hydrocolloid. 2022 Mar;124:107313 72. [IF=9.147] Minmin Ai et al."Molecular structural modification of duck egg white protein conjugates with monosaccharides for improving emulsifying capacity."Food Hydrocolloid. 2021 Feb;111:106271 73. [IF=9.147] Yupeng Lin et al."Structural and rheological characterization of pectin from passion fruit (Passiflora edulis f. flavicarpa) peel extracted by high-speed shearing."Food Hydrocolloid. 2021 May;114:106555 74. [IF=7.514] Pin Chen et al."The bioavailability of soybean polysaccharides and their metabolites on gut microbiota in the simulator of the human intestinal microbial ecosystem (SHIME)."Food Chem. 2021 Nov;362:130233 75. [IF=6.953] Zhou Dong et al."Purification and comparative study of bioactivities of a natural selenized polysaccharide from Ganoderma Lucidum mycelia."Int J Biol Macromol. 2021 Nov;190:101 76. [IF=6.953] Bingwu Liao et al."A novel Hericium erinaceus polysaccharide: Structural characterization and prevention of H2O2-induced oxidative damage in GES-1 cells."Int J Biol Macromol. 2020 Jul;154:1460 77. [IF=6.953] Zheya Chen et al."Characterization of physicochemical and biological properties of Schizophyllum commune polysaccharide extracted with different methods."Int J Biol Macromol. 2020 Aug;156:1425 78. [IF=6.953] Yan Zhou et al."Structural characterization and immunomodulatory activities of two polysaccharides from Rehmanniae Radix Praeparata."Int J Biol Macromol. 2021 Sep;186:385 79. [IF=6.953] Hengqiang Zhao et al."Acidic hydrolysate fingerprints based on HILIC-ELSD/MS combined with multivariate analysis for investigating the quality of Ganoderma lucidum polysaccharides."Int J Biol Macromol. 2020 Nov;163:476 80. [IF=6.953] Danping Xu et al."Extraction, purification and antioxidant activity of polysaccharide from cold pressed oil cake of ‘Tengjiao’ seed."Int J Biol Macromol. 2020 Nov;163:508 81. [IF=6.953] Wei Chen et al."Black mulberry (Morus nigra L.) polysaccharide ameliorates palmitate-induced lipotoxicity in hepatocytes by activating Nrf2 signaling pathway."Int J Biol Macromol. 2021 Mar;172:394 82. [IF=6.475] Mingchun Wen et al."Quantitative changes in monosaccharides of Keemun black tea and qualitative analysis of theaflavins-glucose adducts during processing."Food Res Int. 2021 Oct;148:110588 83. [IF=6.186] Yi Lu et al."Selective conversion of lignocellulosic biomass into furan compounds using bimetal-modified bio-based activated carbon: Analytical Py-GC×GC/MS."J Energy Inst. 2020 Dec;93:2371 84. [IF=5.645] Xueqiang Liu et al."Efficient production of acetylated xylooligosaccharides from Hawthorn kernels by a xylanase from Paecilomyces aerugineus."Ind Crop Prod. 2020 Dec;158:112962 85. [IF=5.275] Qiting Pan et al."Extraction, structural characterization, and antioxidant and immunomodulatory activities of a polysaccharide from Notarchus leachii freeri eggs."Bioorg Chem. 2021 Nov;116:105275 86. [IF=4.952] Mei Yang et al."Investigation of combined effects of xylanase and glucose oxidase in whole wheat buns making based on reconstituted model dough system."Lwt Food Sci Technol. 2021 Jan;135:110261 87. [IF=4.952] Xinru Xu et al."Study of the mechanism of flavor compounds formed via taste-active peptides in bovine bone protein extract."Lwt Food Sci Technol. 2021 Feb;137:110371 88. [IF=4.952] Dong-Yu Shen et al."Characterization of aroma in response surface optimized no-salt bovine bone protein extract by switchable GC/GC×GC-olfactometry-mass spectrometry, electronic nose, and sensory evaluation."Lwt Food Sci Technol. 2021 Jul;147:111559 89. [IF=4.784] Qiping Zhan et al."Structural characterization and immunomodulatory activity of a novel acid polysaccharide isolated from the pulp of Rosa laevigata Michx fruit."Int J Biol Macromol. 2020 Feb;145:1080 90. [IF=4.411] Zhichao Du et al."Synthesis of MeON-Glycoside Derivatives of Oleanolic Acid by Neoglycosylation and Evaluation of Their Cytotoxicity against Selected Cancer Cell Lines."Molecules. 2021 Jan;26(3):772 91. [IF=4.192] Dongwen Hu et al."Polysaccharide from Mulberry Fruit (Morus alba L.) Protects against Palmitic-Acid-Induced Hepatocyte Lipotoxicity by Activating the Nrf2/ARE Signaling Pathway."J Agr Food Chem. 2020;68(46):13016–13024 92. [IF=3.24] Jun Mu et al."Microbial origin of bioflocculation components within a promising natural bioflocculant resource of Ruditapes philippinarum conglutination mud from an aquaculture farm in Zhoushan, China."Plos One. 2019 Jun;14(6):e0217679 93. [IF=3.167] Fuli Sun et al."Aqueous Preparation of Maillard Reaction Intermediate from Glutathione and Xylose and its Volatile Formation During Thermal Treatment."J Food Sci. 2019 Dec;84(12):3584-3593 94. [IF=2.629] Yan Xiaoteng et al."Extraction, Purification, Characterization, and Antiangiogenic Activity of Acidic Polysaccharide from Buddleja officinalis."Evid-Based Compl Alt. 2020;2020:5175138 95. [IF=2.629] Dai Yu-Lin et al."Low Molecular Weight Oligosaccharide from Panax ginseng C.A. Meyer against UV-Mediated Apoptosis and Inhibits Tyrosinase Activity In Vitro and In Vivo."Evid-Based Compl Alt. 2021;2021:8879836 96. [IF=2.19] Qingsong Zheng et al."Effects of different extraction methods on the structure, antioxidant activity, α-amylase, and α-glucosidase inhibitory activity of polysaccharides from Potentilla discolor Bunge."J Food Process Pres. 2021 Oct;45(10):e15826 97. [IF=3.24] Jun Mu et al.Ubiquitous flocculation activity and flocculation production basis of the conglutination mud from Ruditapes philippinarum along the coast of China.Plos One. 2021 Nov;16(11):e0256013 98. [IF=7.514] Lulu Yuan et al."Preparation, structural characterization and antioxidant activity of water-soluble polysaccharides and purified fractions from blackened jujube by an activity-oriented approach."Food Chem. 2022 Aug;385:132637 99. [IF=9.147] Ningxian Yang et al."Structure, physicochemical characterisation and properties of pectic polysaccharide from Premma puberula pamp.."Food Hydrocolloid. 2022 Feb;:107550 100. [IF=5.89] Yinzhuang Zhu et al."Optimization of a Two-Species Microbial Consortium for Improved Mcl-PHA Production From Glucose–Xylose Mixtures."Front Bioeng Biotech. 2021; 9: 794331 101. [IF=4.952] Aiyu Qu et al."Investigation of gas-producing bacteria in sufu and its effective method to control their growth."Lwt Food Sci Technol. 2022 Feb;155:112919 102. [IF=5.645] Na Li et al."Improving catalytic efficiency of endoxylanase for degrading corncob xylan to produce xylooligosaccharides by fusing a β-xylosidase."Ind Crop Prod. 2022 Feb;176:114349 103. [IF=5.753] Jianghong Gao et al."Molecular Cloning and Functional Characterization of a Sterol 3-O-Glucosyltransferase Involved in Biosynthesis of Steroidal Saponins in Trigonella foenum-graecum.."Front Plant Sci. 2021 Dec;12:809579-809579 104. [IF=7.491] Jinrong Xiao et al."Effects of ultrasound on the degradation kinetics, physicochemical properties and prebiotic activity of Flammulina velutipes polysaccharide."Ultrason Sonochem. 2022 Jan;82:105901 105. [IF=3.167] Yuwei Liu et al."Structural characterization and immunomodulatory effects of extracellular polysaccharide from Lactobacillus paracasei VL8 obtained by gradient ethanol precipitation."JOURNAL OF FOOD SCIENCE. 2022 Apr 12 106. [IF=5.396] Chunyin Qin et al."Comparison on the chemical composition, antioxidant, anti-inflammatory, α-amylase and α-glycosidase inhibitory activities of the supernatant and cream from black tea infusion."Food & Function. 2022 Apr;: 107. [IF=2.858] Chaomin Yin et al."Comparative analysis of physicochemical characteristics and in vitro biological activities of polysaccharides from γ-irradiated and nonirradiated Schizophyllum commune."RADIATION PHYSICS AND CHEMISTRY. 2022 Aug;197:110177 108. [IF=4.451] Lan Yang et al."Prebiotic properties of Ganoderma lucidum polysaccharides with special enrichment of Bacteroides ovatus and B. uniformis in vitro."Journal of Functional Foods. 2022 May;92:105069 109. [IF=5.275] Fenghua Wang et al."Insights into the mechanism for the high-alkaline activity of a novel GH43 β-xylosidase from Bacillus clausii with a promising application to produce xylose."BIOORGANIC CHEMISTRY. 2022 Sep;126:105887 110. [IF=2.505] Feifeng Wang et al."Structure characterization and bioactivity of neutral polysaccharides from different sources of Polygonatum Mill."BIOPOLYMERS |
木糖为五碳糖,在开链式醛式结构与争环氧式半缩醛结构之间存在动态平衡,因而存在变旋光现象。比旋光度[alDo为+18.6。~+92。。木糖为无色或白色结晶,或白色结晶性粉末,略有特殊
气味和爽口甜味。易溶于水和热乙醇,不溶于乙醇、乙醚,相对密度为1. 525,熔点144℃,甜度约为蔗糖的40%,人体不能消化吸收。
木糖广泛存在于植物中,如蔗渣、油茶壳、玉米芯和稻壳等,以上农副产品中大多含有丰富的纤维素、半纤维素和木质素,纤维素和半纤维素经水解可转化为相应的糖类,溶解于水,成为混合糖溶液,溶液再经精制、浓缩、加氢等处理后可得到糖醇,半纤维素中的多缩戊糖,在水解时分子中苷键断裂,与水分子结合可生成木糖,木质素在水解过程中无变化可沉淀除去,用来造纸或另作他用。通常的制备方法有中和法、离子交换脱酸法、电渗析脱酸法、结晶法、连续水解层析分离法等。其中中和法与离子交换脱酸法是成熟的工艺路线。1、中和法。2、离子交换脱酸法。
本品按干燥品计算,含C5 H10 0 5应为98. 0 %〜102. 0 %。
取本品约10g,精密称定,置100ml量瓶中,用水80ml与氨试液lm l溶解,用水稀释至刻度,摇勻,放置3 0分钟,依法测定(通则0621),比旋度为+ 18.5。〜+ 19. 5。
为无热量甜味剂,适用于肥胖症患者和糖尿病患者,也是制酱色的原料及香料原料。
取本品5.0g,加水25ml使溶解,依法测定(通则0631),p H 值为5 .0〜7 .0。
取本品l .O g ,用水10m丨溶解后,依法检查(通则0901与通则0902),溶液应澄清无色。
取本品l_0 g,依法检查(通则0801) ,与标准氯化钠溶液5. 0m l制成的对照液比较,不得更浓(0.005% )。
取本品2.0g,依法检査(通则0802) ,与标准硫酸钾溶液1 .0m l制成的对照液比较,不得更浓(0.005% )。
取本品适量,精密称定,用流动相溶解并稀释制成每lm l中约含5mg的溶液,作为供试品溶液;精密量取lm l ,置100ml量瓶中,用流动相稀释至刻度,摇匀,作为对照溶液。照含量测定项下的方法,取对照溶液20^1注人液相色谱仪,调节检测灵敏度,使主成分色谱峰的峰髙约为满量程的25% ; 精密量取供试品溶液和对照溶液各20^x1,分别注人液相色谱仪,记录色谱图至主成分峰留时间的3倍,供试品溶液色谱图中如有杂质峰,单个杂质峰面积不得大于对照溶液主峰面积(1.0% ),各杂质峰面积的和不得大于对照溶液主峰面积的2倍(2. 0% )。
取本品l .O g ,在105°C干燥至恒重(通则0831),减失重量不得过0 .3%。
取本品l.O g,依法检查(通则0841) ,遗留残渣不得过0 .1%。
取本品2.0g,依法检查(通则0807) ,与标准铁溶液1 .0m l制成的对照溶液比较,不得更深(0.0005% )。
取本品2.0g,用水20ml溶解后,加醋酸盐缓冲液(pH 3.5)2ml,依法检査(通则0821第一法),含重金属不得过百万分之十。
照高效液相色谱法(通则0512)测定。
以氨基键合硅胶为填充剂;以乙腈-水(65 : 35)为流动相;示差检测器,检测器温度4 0 C ;柱温45*€。取D -木糖与果糖,用流动相溶解并定量稀释制成每lm l中约含D-木糖与果糖为lm g与0. 2mg的系统适用性溶液,摇匀,取20卩1,注人液相色谱仪,记录色谱图。D-木糖峰与果糖峰的分离度应大于1 .5。
取本品适量,精密称定,用流动相溶解稀释并定量制成每lm l中约含lm g的溶液,摇匀,精密量取20^1,注人液相色谱仪,记录色谱图;另取木糖对照品,同法测定,按外标法以峰面积计算,即得。
药用辅料,甜味剂和稀释剂等。
密闭,在阴凉干燥处保存。
微信搜索化工百科或扫描下方二维码,添加化工百科小程序,随时随地查信息!