中文名 | 四环素 |
英文名 | tetracycline |
别名 | 四環素 四环素 四環黴素 四环素碱 水合四环素, TETRACYCLINE 四环素碱 4-(二甲基氨基)-1,4,4A,5,5A,6,11,12A-八氢-3,6,10,12,12A-五羟基-6-甲基-1,11-二羰基-2-萘甲酰胺 |
英文别名 | abramycin bio-tetra tetracycline bristacycline Tetracycline Base bristaciclinalpha tetracycline free base 12,12a-pentahydroxy-6-methyl-1,11-dioxo-1 6-methyl-1,11-dioxy-2-naphthacenecarboxamide 4a,5,5a,6,11,12a-octahydro-3,6,10,12,12a-pentahydroxy-6-4-(dimethylamino)-4 4-(dimethylamino)-3,6,10,12,12a-pentahydroxy-6-methyl-1,11-dioxo-1,4,4a,5,5a,6,11,12a-octahydrotetracene-2-carboxamide 4-(dimethylamino)-1,4,4a,5,5a,6,11,12a-octahydro-3,6,10,12,12a-pentahydroxy-6-methyl-1,11-dioxo-2-Naphthacenecarboxamide (4S,4aS,6S,12aS)-4-(dimethylamino)-3,6,10,12,12a-pentahydroxy-6-methyl-1,11-dioxo-1,4,4a,5,5a,6,11,12a-octahydrotetracene-2-carboxamide (4S,4aS,5aS,6S,12aS)-4-(dimethylamino)-3,6,10,12,12a-pentahydroxy-6-methyl-1,11-dioxo-1,4,4a,5,5a,6,11,12a-octahydrotetracene-2-carboxamide |
CAS | 60-54-8 |
EINECS | 200-481-9 |
化学式 | C22H24N2O8 |
分子量 | 444.43 |
InChI | InChI=1/C22H24N2O8/c1-21(31)8-5-4-6-11(25)12(8)16(26)13-9(21)7-10-15(24(2)3)17(27)14(20(23)30)19(29)22(10,32)18(13)28/h4-6,9-10,15,25,27-28,31-32H,7H2,1-3H3,(H2,23,30)/t9-,10-,15-,21+,22-/m0/s1 |
InChIKey | OFVLGDICTFRJMM-WESIUVDSSA-N |
密度 | 1.3809 (rough estimate) |
熔点 | 175-177°C(lit.) |
沸点 | 554.44°C (rough estimate) |
比旋光度 | D25 -257.9° (0.1N HCl); D25 -239° (methanol) |
闪点 | 431.953°C |
水溶性 | Limited solubility in water. Soluble in 1M HCl with heating. |
蒸汽压 | 0mmHg at 25°C |
溶解度 | 95% 乙醇: 可溶物12.5mg/mL |
折射率 | 1.6500 (estimate) |
酸度系数 | pKa (50% aq DMF): 8.3, 10.2(at 25℃) |
存储条件 | 2-8°C |
稳定性 | 吸湿性 |
敏感性 | Easy to absorb moisture and sensitive to light |
外观 | 粉末 |
颜色 | yellow to yellow orange |
Merck | 13,9271 |
BRN | 2230417 |
MDL号 | MFCD00151232 |
危险品标志 | Xn - 有害物品 Xi - 刺激性物品 |
风险术语 | R22 - 吞食有害。 R36/37/38 - 刺激眼睛、呼吸系统和皮肤。 |
安全术语 | S22 - 切勿吸入粉尘。 S36 - 穿戴适当的防护服。 S26 - 不慎与眼睛接触后,请立即用大量清水冲洗并征求医生意见。 |
WGK Germany | 3 |
RTECS | QI8750000 |
FLUKA BRAND F CODES | 3-8-10 |
海关编号 | 29413000 |
上游原料 | 氢气 |
参考资料 展开查看 | 1. 钟敏华 朱慧玲 张馨月 等. 2012-2014年广州地区沙眼衣原体常用抗菌药的敏感性测定[J]. 中国艾滋病性病 2015(10):884-886. 2. 刘臻 施华宏 黄宏 尹大强.3种抗生素对热带爪蟾胚胎发育的毒性影响[J].安全与环境学报 2011 11(05):1-6. 3. 倪佳珩 苏芸 耿博 等. SnO_2/石英柱粒子电极的制备及降解四环素废水的研究[J]. 分析试验室 2016(6):641-644. 4. 吴学玲 吴晓燕 李交昆 等. 一株四环素高效降解菌的分离及降解特性[J]. 生物技术通报 2018 34(005):172-178. 5. 王攀攀 袁巧霞 周文兵. 光催化降解沼液中四环素类抗生素效果及反应动力学研究[J]. 农业工程学报 2018 034(023):193-198. 6. 陶美 贺玉龙 王林 等. 四环素降解菌的筛选及其降解特性[J]. 应用与环境生物学报 2018 024(002):384-389. 7. 高婉茹, 李跑, 黄昭,等. 磁性分子印迹纳米粒子对四环素的富集分离[J]. 食品研究与开发, 2019, 040(024):1-5. 8. 范世锁, 刘文浦, 王锦涛,等. 茶渣生物炭制备及其对溶液中四环素的去除特性. 9. 黄昭, 李跑, 曹亚男,等. 诺氟沙星磁分子印迹纳米粒子的制备及其富集分离[J]. 食品研究与开发, 2020(18):52-57. 10. 张济培, 韦庆兰, 谭华龙,等. 广东地区水禽源大肠杆菌对四环素的耐药性及耐药基因检测[J]. 畜牧与兽医, 2015, 47(012):94-97. 11. 迟翔, 周文兵, 武林,等. Fenton法对沼液中三种四环素类和三种磺胺类抗生素氧化去除的研究[J]. 农业环境科学学报, 2018, 37(11):100-104. 12. 迟翔, 靳渝鄂, 周文兵,等. 超声-Fenton法对沼液中3种四环素类和3种磺胺类抗生素氧化去除的研究[J]. 环境科学学报, 2019(7). 13. 王露, 司晓萍, 唐辉,等. 禽畜肉中7种抗生素残留检测[J]. 分析试验室, 2019, 038(007):854-858. 14. 高铭坤, 张智, 钱芳. 混合菌制剂(BMX)毒理,功能性试验及对育肥猪的作用效果[J]. 饲料研究, 2018, No.485(04):66-71. 15. 刘敏芳, 曹梦蕊, 李荣旭,等. 广东部分地区水禽源沙门氏菌的分离鉴定与药物敏感性分析[J]. 黑龙江畜牧兽医, 2018(10). 16. 黄昭,李跑,曹亚男,李佳银,刘霞.诺氟沙星磁分子印迹纳米粒子的制备及其富集分离[J].食品研究与开发,2020,41(18):52-57. 17. 张政,马更勤,王宏勋,侯温甫,周敏.副溶血弧菌耐药诱导株的生物特性与多药外排泵表达[J].现代食品科技,2020,36(08):15-22. 18. Tian, Qiaopeng, et al. "Characterization of a robust cold-adapted and thermostable laccase from Pycnoporus sp. SYBC-L10 with a strong ability for the degradation of tetracycline and oxytetracycline by laccase-mediated oxidation." Journal of hazardous mater 19. Wang, L., Yan, C. & Wang, Q. Palygorskite/g-C3N4 conjunction for visible-light-driven degradation of tetracycline hydrochloride. J Mater Sci: Mater Electron 30, 18159–18167 (2019). https://doi.org/10.1007/s10854-019-02169-0 20. Cai, Jingju, et al. "Extremely efficient electrochemical degradation of organic pollutants with co-generation of hydroxyl and sulfate radicals on Blue-TiO2 nanotubes anode." Applied Catalysis B: Environmental 257 (2019): 117902.https://doi.org/10.1016/j.ap 21. Cai, Jingju, et al. "Extremely efficient electrochemical degradation of organic pollutants with co-generation of hydroxyl and sulfate radicals on Blue-TiO2 nanotubes anode." Applied Catalysis B: Environmental 257 (2019): 117902.https://doi.org/10.1016/j.ap 22. Jianmei Wang, Peng Yang, Mengmei Cao, Na Kong, Wenrong Yang, Shu Sun, You Meng, Jingquan Liu,A novel graphene nanodots inlaid porous gold electrode for electrochemically controlled drug release,Talanta,Volume 147,2016,Pages 184-192,ISSN 0039-9140,ht 23. Ming Lu, Chenyang Cao, Feng Wang, Guocong Liu,A polyethyleneimine reduced graphene oxide/gold nanocubes based electrochemical aptasensor for chloramphenicol detection using single-stranded DNA-binding protein,Materials & Design,Volume 199,2021,109409, 24. [IF=6.057] Jianmei Wang et al."A novel graphene nanodots inlaid porous gold electrode for electrochemically controlled drug release."Talanta. 2016 Jan;147:184 25. [IF=5.833] He Baoshan et al."Voltammetric kanamycin aptasensor based on the use of thionine incorporated into Au@Pt core-shell nanoparticles."Microchim Acta. 2019 Feb;186(2):1-8 26. [IF=4.223] Fan Shisuo et al."Removal of tetracycline from aqueous solution by biochar derived from rice straw."Environ Sci Pollut R. 2018 Oct;25(29):29529-29540 27. [IF=2.896] Bao-Shan He et al."Electrochemical aptasensor based on aptamer-complimentary strand conjugate and thionine for sensitive detection of tetracycline with multi-walled carbon nanotubes and gold nanoparticles amplification."Anal Methods-Uk. 2018 Feb;10(7):783 28. [IF=19.503] Jingju Cai et al."Extremely efficient electrochemical degradation of organic pollutants with co-generation of hydroxyl and sulfate radicals on Blue-TiO2 nanotubes anode."Appl Catal B-Environ. 2019 Nov;257:117902 29. [IF=13.273] Panpan Wang et al."Photocatalytic degradation of tetracyclines in liquid digestate: Optimization, kinetics and correlation studies."Chem Eng J. 2021 Apr;410:128327 30. [IF=10.588] Qiaopeng Tian et al."Characterization of a robust cold-adapted and thermostable laccase from Pycnoporus sp. SYBC-L10 with a strong ability for the degradation of tetracycline and oxytetracycline by laccase-mediated oxidation."J Hazard Mater. 2020 Jan;382: 31. [IF=10.588] Jingju Cai et al."Stable boron and cobalt co-doped TiO2 nanotubes anode for efficient degradation of organic pollutants."J Hazard Mater. 2020 Sep;396:122723 32. [IF=10.588] Yong Guo et al."UV-light promoted formation of boron nitride-fullerene composite and its photodegradation performance for antibiotics under visible light irradiation."J Hazard Mater. 2021 May;410:124628 33. [IF=9.642] Yanglu Mei et al."Effect of Fe–N modification on the properties of biochars and their adsorption behavior on tetracycline removal from aqueous solution."Bioresource Technol. 2021 Apr;325:124732 34. [IF=7.991] Ming Lu et al."A polyethyleneimine reduced graphene oxide/gold nanocubes based electrochemical aptasensor for chloramphenicol detection using single-stranded DNA-binding protein."Mater Design. 2021 Feb;199:109409 35. [IF=7.514] Zi-Tao Zhong et al."Quantitative analysis of various targets based on aptamer and functionalized Fe3O4@graphene oxide in dairy products using pregnancy test strip and smartphone."Food Chem. 2021 Aug;352:129330 36. [IF=7.086] Bin Li et al."Facile preparation of magnetic porous biochars from tea waste for the removal of tetracycline from aqueous solutions: Effect of pyrolysis temperature."Chemosphere. 2021 Oct;:132713 37. [IF=7.086] Bin Li et al."Effect of carbonization methods on the properties of tea waste biochars and their application in tetracycline removal from aqueous solutions."Chemosphere. 2021 Mar;267:129283 38. [IF=6.057] Song Hu et al."Reliable performance of aggregation-induced emission nanoparticle-based lateral flow assay for norfloxacin detection in nine types of animal-derived food."Talanta. 2020 Nov;219:121245 39. [IF=6.057] Ruirui Xie et al."Lanthanide-functionalized metal-organic frameworks based ratiometric fluorescent sensor array for identification and determination of antibiotics."Talanta. 2021 Aug;231:122366 40. [IF=5.909] Bin Li et al."Simultaneous carbonization, activation, and magnetization for producing tea waste biochar and its application in tetracycline removal from the aquatic environment."J Environ Chem Eng. 2021 Aug;9:105324 41. [IF=4.223] Li Bin et al."Enhanced adsorption capacity of tetracycline on tea waste biochar with KHCO3 activation from aqueous solution."Environ Sci Pollut R. 2021 Aug;28(32):44140-44151 42. [IF=3.591] Congcong Yan et al."Improved photoremoval performance of boron carbon nitride–pyromellitic dianhydride composite toward tetracycline and Cr(VI) by itself to change the solution pH."New J Chem. 2020 Jul;44(26):11105-11124 43. [IF=3.186] Guo Jifeng et al."Synthesis and Characterization of SrFeO2.73/Bi2MoO6 Heterojunction with Enhanced Photocatalytic Activity."Catal Lett. 2021 Aug;151(8):2176-2186 44. [IF=2.52] Mei Yanglu et al."Biochar from Rice Straw for Cu2+ Removal from Aqueous Solutions: Mechanism and Contribution Made by Acid-Soluble Minerals."Water Air Soil Poll. 2020 Aug;231(8):1-13 45. [IF=2.281] Zhiqiang Zhang et al."Contribution of the colicin receptor CirA to biofilm formation, antibotic resistance, and pathogenicity of Salmonella Enteritidis."J Basic Microb. 2020 Jan;60(1):72-81 46. [IF=10.588] Aiyun Guo et al.Prochloraz alone or in combination with nano-CuO promotes the conjugative transfer of antibiotic resistance genes between Escherichia coli in pure water.J Hazard Mater. 2022 Feb;424:127761 47. [IF=4.987] Zhang Yin et al.Enhanced adsorption performance of tetracycline in aqueous solutions by KOH-modified peanut shell-derived biochar.Biomass Conversion and Biorefinery.2021 Nov 19 48. [IF=1.51] Baoe Wang et al."CFD simulation of a swirling vortex cavitator and its degradation performance and pathway of tetracycline in aqueous solution."Int J Chem React Eng. 2022 Feb;: 49. [IF=5.909] Yi Zhou et al."Simultaneous removal of tetracycline and norfloxacin from water by iron-trimesic metal-organic frameworks."J Environ Chem Eng. 2022 Jun;10:107403 50. [IF=3.196] Peng Cao et al."Complecting the BiOCl nano-roundels based hollow microbasket induced by chitosan for dramatically enhancing photocatalytic activity."J Mol Struct. 2022 Apr;1254:132339 51. [IF=5.882] Zi-Jian Zheng et al."MALDI-TOF MS for rapid detection and differentiation between Tet(X)-producers and non-Tet(X)-producing tetracycline-resistant Gram-negative bacteria."Virulence. 2022;13(1):77-88 52. [IF=7.312] Yunyun Li et al."Mass transfer enhancement for rapid, selective extraction of pharmaceuticals by enlarging the microporous on isostructural zeolitic imidazolate Framework-8."SEPARATION AND PURIFICATION TECHNOLOGY. 2022 Jul;293:121102 53. [IF=6.953] Hexiang Xie et al."Chitosan/rice hydrolysate/curcumin composite film: Effect of chitosan molecular weight."INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES. 2022 Jun;210:53 54. [IF=4.223] Zhang Shiqiu et al."Enhanced removal of tetracycline via advanced oxidation of sodium persulfate and biochar adsorption."ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH. 2022 May;:1-12 |
微信搜索化工百科或扫描下方二维码,添加化工百科小程序,随时随地查信息!