淡黄色至茶褐色略带茶叶香味的水溶液,脱水后为灰白色粉状固体或结晶,具涩味。略吸潮,易溶于水、乙醇、乙酸乙酯等极性较强的溶剂,微溶于油脂等弱极性溶剂。本身具有弱酸性,其水溶液pH值约为3~4。耐热及耐酸性较好,在pH2~7范围内稳定,耐光及耐碱性差,在pH>8或光照下易氧化聚合。对真菌、酵母、乳酸菌及醋酸菌均无抑制作用,但可有效地抑制引起龋齿的口腔变异
链球菌。此外,茶多酚具有抗氧化、抗癌变、清除自由基、降血压与降胆固醇等生物学功能。
从茶叶中提取茶多酚的方法主要有沉淀分离法、吸附分离法、有机溶剂提取法、低温纯化酶提取法、盐析法等,新发展的方法有超临界溶剂提取法等。这里介绍最常用的钙盐沉淀分离法。茶叶粉碎后在萃取釜中用80℃热水浸泡30min,过滤,再用少量沸水洗涤滤饼,将洗涤液与滤液合并,滤饼干燥后可提咖啡因等其他成分。滤液倒入沉淀容器中,按滤液:石灰水:食盐水-1:6:5左右的比例加入饱和石灰水和饱和石灰水和饱和食盐水,充分搅拌后静置30 min,过滤。再将滤饼置于酸化器中,加入0. 5%~0.8%的H2 S04,调节pH一7.1~7.2,然后用乙酸或柠檬酸调pH值至7.O,充分搅拌,然后静置30min,过滤,水洗,滤液经喷雾干燥可得成品。
可用作食品抗氧化剂和防腐剂,广泛用于动植物油脂、水产品、饮料、糖果、乳制品、油炸食品、调味品、化妆品及功能性食品的抗氧化,还具有消除异味,防腐保鲜等作用。如果使用对象为脂
溶性,可将茶多酚溶于95%食品乙醇配成溶液后加入。若使用对象为水溶性,可直接将茶多酚加入或溶于水后加入,对肉制品可直接用0. 05%茶多酚溶液浸渍或喷涂。
中文名 | (-)-表没食子儿茶素没食子酸酯 |
英文名 | (-)-epigallocatechin gallate |
别名 | 茶多酚 绿茶提取物 (-)-儿茶素酸酯 表没食子儿茶精3-没食子酸酯 (-)-表没食子儿茶素没食子酸酯 (EGCG) 表没食子儿茶素没食子酸酯 EGCG(表没食子酸儿茶素没食子酸酯) (-)-表没食子儿茶素没食子酸酯水合物 表没食子儿茶素没食子酸酯 (EGCG) 绿茶提取液 |
英文别名 | EGCG Green Tea TEA CATECHIN Green Tea P.E Tea polyphenol Tea Polyphenols Green Tea Extract Green tee extract Green Tea Extract Powder L-Epigallocatechin Gallate (-)-epigallocatechin gallate Green tea extract Polyphenols Epigallocatechin-3-Monogallate (-)-Epigallocatechin Gallate-d6 (-)-Epigallocatechin-3-O-gallate (20 mg) (2R,3R)-5,7-dihydroxy-2-(3,4,5-trihydroxyphenyl)-3,4-dihydro-2H-chromen-3-yl 3,4,5-trihydroxybenzoate (-)-CIS-2-(3,4,5-TRIHYDROXYPHENYL)-3,4-DIHYDRO-1(2H)-BENZOPYRAN-3 ,5,7-TRIOL 3-GALLATE(-)-CIS-3,3',4',5,5',7-HEXAHYDROXY-FLAVANE-3-GALLATE |
CAS | 989-51-5 84650-60-2 |
EINECS | 479-560-7 |
化学式 | C22H18O11 |
分子量 | 458.37 |
InChI | InChI=1/C22H18O11/c23-10-5-12(24)11-7-18(33-22(31)9-3-15(27)20(30)16(28)4-9)21(32-17(11)6-10)8-1-13(25)19(29)14(26)2-8/h1-6,18,21,23-30H,7H2/t18-,21-/m1/s1 |
InChIKey | WMBWREPUVVBILR-WIYYLYMNSA-N |
密度 | 1.90±0.1 g/cm3(Predicted) |
熔点 | 222-224°C |
沸点 | 909.1±65.0 °C(Predicted) |
比旋光度 | D -185 ±2°(ethanol) |
闪点 | 320°C |
水溶性 | Soluble in ethanol, dimethyl formamide, water. |
蒸汽压 | 3.71E-35mmHg at 25°C |
溶解度 | H2O: ≥ 5mg/ml,澄清 |
折射率 | -175.5 ° (C=1, EtOH) |
酸度系数 | 7.75±0.25(Predicted) |
存储条件 | 2-8°C |
稳定性 | 稳定,但可能对光敏感。与强氧化剂不相容。 |
外观 | 整洁 |
颜色 | White to Light Brown |
Merck | 14,3526 |
物化性质 | 白色结晶,可溶于甲醇、乙醇、DMSO等有机溶剂,来源于茶叶Tea。 |
MDL号 | MFCD00075940 |
体外研究 | (-)-Epigallocatechin gallate在健康细胞中具有强效抗氧化作用,并降低氧化损伤,作为抗血管生成和抗肿瘤剂,也是肿瘤细胞对化疗应答的调节剂。(-)-Epigallocatechin gallate具有多种抗肿瘤作用,例如抗增殖,抗血管新生,阻断各种癌细胞转化,细胞周期阻滞和抑制肿瘤转移。(-)-Epigallocatechin gallate通过调节多个肿瘤相关的细胞信号通路(调节关键信号蛋白的表达水平,例如核因子-κB, MAPKs和激活蛋白-1,EGFR,IGF,COX-2)影响肿瘤基因的甲基化和配体与膜受体结合发挥抗肿瘤效果。 (-)-Epigallocatechin gallate具有免疫调节作用。多种类型的免疫细胞在先天的和适应性免疫系统中都会不同程度受到(-)-Epigallocatechin gallate的影响。在这些作用中,对T细胞的显著作用被反复证明,包括T细胞激活,增殖,分化和细胞因子产生。基于患有自身免疫疾病的动物模型的研究报道表明,绿茶/EGCG处理会使动物的病情好转。 (-)-Epigallocatechin gallate具有抗感染活性。(-)-Epigallocatechin gallate的以不同激活模式产生的抗病毒活性在很多种属的病毒中被证实,例如逆转录病毒,正粘病毒科和黄病毒科,还包括重要的人类病原细菌,如人类免疫缺陷病原体,甲型流感病毒和丙型肝炎病毒。 |
安全术语 | 24/25 - 避免与皮肤和眼睛接触。 |
WGK Germany | 2 |
RTECS | KB5200000 |
FLUKA BRAND F CODES | 10-23 |
海关编号 | 29339900 |
参考资料 展开查看 | 1. 钮婧歆 郭晶 郭青 等. EGCG对富亮氨酸重复激酶2活性的影响及其作用机制[J]. 江苏大学学报(医学版) 2018 v.28;No.143(05):34-39. 2. 北拉 蒲首丞 孙梅好. HPLC-DAD测定不同时期安吉白茶中EGCG的含量[J]. 中国农业信息 2016(6):57-57. 3. 蒲首丞. HPLC-DAD测定大茶树和小茶树的西湖龙井茶中EGCG的含量[J]. 安徽农业科学 v.42;No.445(12):3714-3715. 4. 李书灵 陆珏秀 余艾虹 等. 儿茶素对家兔离体小肠平滑肌收缩功能和机制的实验研究[J]. 世界最新医学信息文摘 2018 v.18(28):168-169. 5. 孔敏, 周芳, 党秀静,等. 脊髓Toll样受体4在慢性瘙痒中的作用研究[J]. 重庆医学, 2013, 42(9):961-963. 6. 何帅, 王明友, 赵季军,等. 表没食子儿茶素没食子酸酯预防高脂饮食诱导的大鼠肥胖[J]. 西部医学, 2020, 032(004):496-499,504. 7. 孙陶利 周芫宇 黎绫. EGCG-β-LG纳米粒的制备及体外稳定性研究[J]. 生物化工 2020 006(001):35-37 54. 8. 陈斌辉, 吕圭源, 金伟锋,等. 基于正交设计和BP神经网络-遗传算法多指标综合优化茶叶提取工艺[J]. 中国现代应用药学, 2019, 036(010):1223-1228. 9. 黄渊 岳世阳 熊善柏 等. 2种天然抗氧化剂与鲢鱼肌球蛋白的相互作用[J]. 食品科学 2019 40(04):24-30. 10. 陈红霞, 李灏, 吕杰,等. 普洱茶渥堆发酵中活性成分测定及其相关性分析[J]. 北京化工大学学报(自然科学版), 2013, 40(005):84-87. 11. 张天晓, 王祥荣. 真丝织物上茶多酚的高效液相色谱法检测[J]. 现代丝绸科学与技术, 2020(2):4-7. 12. 王舒叆,王子元,张敏.不同抑菌剂对青稞鲜湿面中蜡样芽孢杆菌的抑制作用[J].食品科学,2020,41(13):206-211. 13. 阮鸣. HPLC法同时测定六安瓜片中七种活性成分的含量[J]. 南京晓庄学院学报 2016(6):37-42. 14. 黄贝, 李龙宝, 吴信洁,等. 油茶花青素还原酶基因克隆和体外功能研究[J]. 茶业通报, 2018, 040(002):71-76. 15. 郭颖, 黄峻榕, 陈琦,等. 茶叶中儿茶素类测定方法的优化[J]. 食品科学, 2016, 37(06):137-141. 16. 胡立文, 周晓晴, 张彬,等. 茶叶籽油中儿茶素类和咖啡因含量测定[J]. 南昌大学学报(理科版), 2018, 42(002):134-138,146. 17. 乔小燕, 李波, 何梓卿,等. 黄化英红九号红茶体外抗氧化活性分析[J]. 农产品质量与安全, 2018, 000(005):85-90. 18. 王婷婷 蔡自建 蒲婉欣 等. 四川绿茶感官品质与主要滋味贡献成分分析[J]. 食品研究与开发 2018 39(24):162-167. 19. 乔小燕, 黄秀新, 黄国资,等. "二炒"温度对传统客家炒青绿茶品质特征的影响[J]. 广东农业科学, 2015, 042(001):96-99. 20. 梅双, 乔小燕, 陈维,等. 半连续化生产线和传统单机加工客家炒青绿茶主要品质成分比较分析[J]. 广东农业科学, 2019(11). 21. 周晓晴, 胡立文, 罗琦,等. 茶叶籽油中茶多酚和儿茶素的测定[J]. 食品工业科技, 2019. 22. 魏琳,卢凤美,邵宛芳,袁唯.酸茶发酵过程中感官品质及主要成分变化分析[J].食品研究与开发,2019,40(14):69-74. 23. 乔小燕, 李崇兴, 姜晓辉,等. 不同等级CTC红碎茶生化成分分析[J]. 食品工业科技, 2018, 039(010):83-89. 24. 李波, 黄华林, 陈欣,等. 不同季节黄化英红九号红茶品质比较分析[J]. 山东农业科学, 2019. 25. 欧惠算,张灵枝,王维生.阿姆斯特丹散囊菌对六堡茶品质成分的影响研究[J].中国茶叶加工,2019(02):45-50. 26. 蔡爽, 阮成江, 杜维, et al. 沙棘叶片,果肉和种子中黄酮类成分的差异[J]. 植物资源与环境学报, 2019(4). 27. 汤晓, 倪翠阳, 王丽英,等. 煮制时间与二次煮制对紫娟普洱茶抗氧化性的影响[J]. 食品工业科技, 2015, 036(008):141-147. 28. 杜欢欢, 蔡艳妮, 江海,等. 超高效液相串联质谱同时测定茶叶中的8种有效物质[J]. 陕西理工大学学报(自然科学版), 2017(33):74-80. 29. 乔小燕, 黄华林, 李波,等. 广东客家茶树种质资源儿茶素特性分析[J]. 江西农业学报, 2019, v.31(01):30-33. 30. 乔小燕, 黄国资, 王秋霜,等. 连续化生产线加工过程中客家炒青绿茶主要品质成分的化[J]. 广东农业科学, 2014, 041(024):91-94. 31. 萎凋方式对黄化英红九号红茶品质的影响 32. 穆青 陈亚淑 谢笔钧 杨季芳 陈吉刚 孙智达.北极海洋红球菌B7740(Rhodococcus sp.)产类胡萝卜素和类异戊二烯醌的抗氧化、抗增殖活性[J].食品科学 2018 39(11):159-164. 33. 乔小燕, 陈维, 马成英,等. 不同仓储地康砖茶生化成分比较分析[J]. 广东茶业, 2019(5):7-10. 34. 黄华林, 李波, 陈海强,等. 不同萎凋时间英红九号和黄化英红九号红茶品质比较[J]. 山西农业科学, 2019, 047(010):1742-1745. 35. 王玮, 张纪伟, 赵一帆,等. 澜沧江流域部分茶区古茶树资源生化成分多样性的分析[J]. 分子植物育种, 2020(2). 36. 马丽娜. 基于QSPR和分子动力学模拟的中药成分肠吸收预测方法研究[D].北京中医药大学,2020. 37. 乔小燕,操君喜,车劲,陈栋,刘仲华.基于滋味和香气成分结合化学计量法鉴别不同贮藏年份的康砖茶[J].现代食品科技,2020,36(09):260-269+299. 38. 夏兴莉,廖界仁,任太钰,马媛春,王玉花,房婉萍,朱旭君.低温处理对茶树叶片中γ-氨基丁酸和其他活性成分含量的影响[J].植物资源与环境学报,2020,29(05):75-77. 39. 薛庆,童梁成,杨智伟,汪剑龄,赵磊,周胜,彭赛,李颖.表没食子儿茶素没食子酸酯可减轻大鼠骨骼肌缺血再灌注损伤[J].中国组织工程研究,2021,25(26):4145-4149. 40. 刘行海,徐策,买文丽,郑倩,刘华,刘红.表没食子儿茶素没食子酸酯对2型糖尿病大鼠认知功能的影响及其机制研究[J].川北医学院学报,2021,36(01):14-16. 41. 姜丽娜,李纪元,范正琪,童冉,莫润宏,李志辉,蒋昌杰.金花茶组植物花朵内多酚组分含量分析[J].林业科学研究,2020,33(04):117-126. 42. 张恒,郑俏然,何靖柳,韦婷,刘翔,章斌.藏茶玫瑰乌梅无糖复合饮料研制及功能性成分分析与抗氧化研究[J].食品科技,2021,46(01):46-53+61. 43. Li, Wenfeng, Kun Zhang, and Qiang Zhao. "Fructooligosaccharide enhanced absorption and anti-dyslipidemia capacity of tea flavonoids in high sucrose-fed mice." International journal of food sciences and nutrition 70.3 (2019): 311-322.https://doi.org/10.1080 44. Chen, Yinxia, and Meihu Ma. "Foam and conformational changes of egg white as affected by ultrasonic pretreatment and phenolic binding at neutral pH." Food Hydrocolloids 102 (2020): 105568.https://doi.org/10.1016/j.foodhyd.2019.105568 45. Yang, Rui, et al. "Fabrication and characterization of ferritin–chitosan–lutein shell–core nanocomposites and lutein stability and release evaluation in vitro." RSC advances 6.42 (2016): 35267-35279.https://doi.org/10.1039/C6RA04058F 46. Chuang Zhu, Yan Xu, Zeng-Hui Liu, Xiao-Chun Wan, Da-Xiang Li, Ling-Ling Tai, The anti-hyperuricemic effect of epigallocatechin-3-gallate (EGCG) on hyperuricemic mice, Biomedicine & Pharmacotherapy, Volume 97, 2018, Pages 168-173, ISSN 0753-3322, https://do 47. Jin, P., Li, M., Xu, G., Zhang, K., Zheng, L., & Zhao, J. (2015). Role of (-)-epigallocatechin-3-gallate in the osteogenic differentiation of human bone marrow mesenchymal stem cells: An enhancer or an inducer? Corrigendum in /10.3892/etm.2021.9725. Experi 48. Zhang, Xing, Hui He, and Tao Hou. "Molecular mechanisms of selenium-biofortified soybean protein and polyphenol conjugates in protecting mouse skin damaged by UV-B." Food & function 11.4 (2020): 3563-3573.DOI: 10.1016/j.foodchem.2021.129888 49. Chang, Yifan, et al. "Improved viability of Akkermansia muciniphila by encapsulation in spray dried succinate-grafted alginate doped with epigallocatechin-3-gallate." International Journal of Biological Macromolecules 159 (2020): 373-382.https://doi.org/10 50. Jia, Longgang, et al. "General Aggregation-Induced Emission Probes for Amyloid Inhibitors with Dual Inhibition Capacity against Amyloid β-Protein and α-Synuclein." ACS Applied Materials & Interfaces 12.28 (2020): 31182-31194.https://doi.org/10.1021/acsami. 51. Zou, Mingming, et al. "Evaluation of antimicrobial and antibiofilm properties of proanthocyanidins from Chinese bayberry (Myrica rubra Sieb. et Zucc.) leaves against Staphylococcus epidermidis." Food science & nutrition 8.1 (2020): 139-149.https://doi.org/ 52. Tang, Huaqiao, et al. "Epigallocatechin-3-gallate protects immunity and liver drug-metabolism function in mice loaded with restraint stress." Biomedicine & Pharmacotherapy 129 (2020): 110418.https://doi.org/10.1016/j.biopha.2020.110418 53. Tang, Huaqiao, et al. "Epigallocatechin-3-gallate protects immunity and liver drug-metabolism function in mice loaded with restraint stress." Biomedicine & Pharmacotherapy 129 (2020): 110418.https://doi.org/10.1016/j.biopha.2020.110418 54. Zhu, Tian-Tian, et al. "Epigallocatechin-3-gallate ameliorates hypoxia-induced pulmonary vascular remodeling by promoting mitofusin-2-mediated mitochondrial fusion." European journal of pharmacology 809 (2017): 42-51.https://doi.org/10.1016/j.ejphar.2017.0 55. Jin, Pan, et al. "Epigallocatechin-3-gallate (EGCG) as a pro-osteogenic agent to enhance osteogenic differentiation of mesenchymal stem cells from human bone marrow: an in vitro study." Cell & Tissue Research 356.2 (2014). 56. Huang, Haojia, et al. "Effect of epigallocatechin-3-gallate on proliferation and phenotype maintenance in rabbit articular chondrocytes in vitro." Experimental and therapeutic medicine 9.1 (2015): 213-218. https://doi.org/10.3892/etm.2014.2057 57. Chen, Weijun, et al. "Co‐encapsulation of EGCG and quercetin in liposomes for optimum antioxidant activity." Journal of food science 84.1 (2019): 111-120.https://doi.org/10.1111/1750-3841.14405 58. Zhang, Ying, et al. "Biotransformation on the flavonolignan constituents of Silybi Fructus by an intestinal bacterial strain Eubacterium limosum ZL-II." Fitoterapia 92 (2014): 61-71.https://doi.org/10.1016/j.fitote.2013.10.001 59. Ge, Zhenzhen, et al. "Comparison of the inhibition on cellular 22-NBD-cholesterol accumulation and transportation of monomeric catechins and their corresponding A-type dimers in Caco-2 cell monolayers." Journal of Functional Foods 27 (2016): 343-351.https: 60. Qu, Fengfeng, et al. "Comparison of the Effects of Green and Black Tea Extracts on Na+/K+‐ATPase Activity in Intestine of Type 1 and Type 2 Diabetic Mice." Molecular nutrition & food research 63.17 (2019): 1801039.https://doi.org/10.1002/mnfr.201801039 61. Hua, Jinjie, et al. "Influence of enzyme source and catechins on theaflavins formation during in vitro liquid-state fermentation." LWT 139 (2021): 110291.https://doi.org/10.1016/j.lwt.2020.110291 62. Liao, Yinyin, et al. "Effect of major tea insect attack on formation of quality-related nonvolatile specialized metabolites in tea (Camellia sinensis) leaves." Journal of agricultural and food chemistry 67.24 (2019): 6716-6724.https://doi.org/10.1021/acs.j 63. Liu, Shuyuan, et al. "In vitro α-glucosidase inhibitory activity of isolated fractions from water extract of Qingzhuan dark tea." BMC complementary and alternative medicine 16.1 (2016): 1-8. 64. Pei Pu, Xin Zheng, Linna Jiao, Lang Chen, Han Yang, Yonghong Zhang, Guizhao Liang, Six flavonoids inhibit the antigenicity of β-lactoglobulin by noncovalent interactions: A spectroscopic and molecular docking study, Food Chemistry, Volume 339, 2021, 128106 65. Yu, Penghui, et al. "Distinct variation in taste quality of Congou black tea during a single spring season." Food science & nutrition 8.4 (2020): 1848-1856.https://doi.org/10.1002/fsn3.1467 66. Xiang, X., Xiang, Y., Jin, S., Wang, Z., Xu, Y., Su, C., Shi, Q., Chen, C., Yu, Q. and Song, C. (2020), The hypoglycemic effect of extract/fractions from Fuzhuan Brick-Tea in streptozotocin-induced diabetic mice and their active components characterized by 67. Qu, Fengfeng, et al. "Comparison of the Effects of Green and Black Tea Extracts on Na+/K+‐ATPase Activity in Intestine of Type 1 and Type 2 Diabetic Mice." Molecular nutrition & food research 63.17 (2019): 1801039.https://doi.org/10.1002/mnfr.201801039 68. Liu, Shuyuan, et al. "Effect of steeping temperature on antioxidant and inhibitory activities of green tea extracts against α-amylase, α-glucosidase and intestinal glucose uptake." Food chemistry 234 (2017): 168-173.https://doi.org/10.1016/j.foodchem.2017. 69. Liu, Shuyuan, et al. "Effect of steeping temperature on antioxidant and inhibitory activities of green tea extracts against α-amylase, α-glucosidase and intestinal glucose uptake." Food chemistry 234 (2017): 168-173.https://doi.org/10.1016/j.foodchem.2017. 70. Liu, Shuyuan, et al. "Effect of steeping temperature on antioxidant and inhibitory activities of green tea extracts against α-amylase, α-glucosidase and intestinal glucose uptake." Food chemistry 234 (2017): 168-173.https://doi.org/10.1016/j.foodchem.2017. 71. [IF=7.514] Shuyuan Liu et al."Effect of steeping temperature on antioxidant and inhibitory activities of green tea extracts against α-amylase, α-glucosidase and intestinal glucose uptake."Food Chem. 2017 Nov;234:168 72. [IF=7.514] Xuemei Guo et al."An emerging strategy for evaluating the grades of Keemun black tea by combinatory liquid chromatography-Orbitrap mass spectrometry-based untargeted metabolomics and inhibition effects on α-glucosidase and α-amylase."Food Chem. 2018 Apr;2 73. [IF=7.46] Sainan Wang et al."Rapid synthesis of protein conjugated gold nanoclusters and their application in tea polyphenol sensing."Sensor Actuat B-Chem. 2016 Feb;223:178 74. [IF=6.529] Chuang Zhu et al."The anti-hyperuricemic effect of epigallocatechin-3-gallate (EGCG) on hyperuricemic mice."Biomed Pharmacother. 2018 Jan;97:168 75. [IF=5.396] Yashi Mi et al."EGCG evokes Nrf2 nuclear translocation and dampens PTP1B expression to ameliorate metabolic misalignment under insulin resistance condition."Food Funct. 2018 Mar;9(3):1510-1523 76. [IF=5.396] Bo Chen et al."Comparative analysis of fecal phenolic content between normal and obese rats after oral administration of tea polyphenols."Food Funct. 2018 Sep;9(9):4858-4864 77. [IF=5.309] Yashi Mi et al."(‐)‐Epigallocatechin‐3‐gallate Ameliorates Insulin Resistance and Mitochondrial Dysfunction in HepG2 Cells: Involvement of Bmal1."Mol Nutr Food Res. 2017 Dec;61(12):1700440 78. [IF=5.279] Jie Zhou et al."LC-MS-Based Metabolomics Reveals the Chemical Changes of Polyphenols during High-Temperature Roasting of Large-Leaf Yellow Tea."J Agr Food Chem. 2019;67(19):5405–5412 79. [IF=4.966] Yashi Mi et al."EGCG ameliorates high‐fat– and high‐fructose‐induced cognitive defects by regulating the IRS/AKT and ERK/CREB/BDNF signaling pathways in the CNS."Faseb J. 2017 Nov;31(11):4998-5011 80. [IF=4.952] Fengfeng Qu et al."Effect of different drying methods on the sensory quality and chemical components of black tea."Lwt Food Sci Technol. 2019 Jan;99:112 81. [IF=4.451] Rong-zu Nie et al."A-type EGCG dimer, a new proanthocyanidins dimer from persimmon fruits, interacts with the amino acid residues of Aβ40 which possessed high aggregation-propensity and strongly inhibits its amyloid fibrils formation."J Funct Foods. 2019 82. [IF=4.451] Zhenzhen Ge et al."Comparison of the inhibition on cellular 22-NBD-cholesterol accumulation and transportation of monomeric catechins and their corresponding A-type dimers in Caco-2 cell monolayers."J Funct Foods. 2016 Dec;27:343 83. [IF=4.411] Jiajun Zeng et al."The Effect of Ultrasound, Oxygen and Sunlight on the Stability of (−)-Epigallocatechin Gallate."Molecules. 2018 Sep;23(9):2394 84. [IF=4.352] Yashi Mi et al."EGCG ameliorates diet-induced metabolic syndrome associating with the circadian clock."Bba-Mol Basis Dis. 2017 Jun;1863:1575 85. [IF=4.098] Chunlin Li et al."Rapid and non-destructive discrimination of special-grade flat green tea using Near-infrared spectroscopy."Spectrochim Acta A. 2019 Jan;206:254 86. [IF=4.079] Rong-zu Nie et al."A-type dimeric epigallocatechin-3-gallate (EGCG) is a more potent inhibitor against the formation of insulin amyloid fibril than EGCG monomer."Biochimie. 2016 Jun;125:204 87. [IF=3.894] Lixia Liu et al."Protective effects of tea polyphenols on exhaustive exercise-induced fatigue, inflammation and tissue damage."Food Nutr Res. 2017;61(1):1333390 88. [IF=3.679] Ya-Nan Zhao et al."Zero-order release of polyphenolic drugs from dynamic, hydrogen-bonded LBL films."Soft Matter. 2016 Jan;12(4):1085-1092 89. [IF=3.659] Liu Shuyuan et al."In vitro α-glucosidase inhibitory activity of isolated fractions from water extract of Qingzhuan dark tea."Bmc Complem Altern M. 2016 Dec;16(1):1-8 90. [IF=3.361] Yun Liu et al."Structural characteristics of (−)-epigallocatechin-3-gallate inhibiting amyloid Aβ42 aggregation and remodeling amyloid fibers."Rsc Adv. 2015 Jul;5(77):62402-62413 91. [IF=3.361] Ji Li et al."Efficient extraction of major catechins in Camellia sinensis leaves using green choline chloride-based deep eutectic solvents."Rsc Adv. 2015 Nov;5(114):93937-93944 92. [IF=3.361] Rui Yang et al."Fabrication and characterization of ferritin–chitosan–lutein shell–core nanocomposites and lutein stability and release evaluation in vitro."Rsc Adv. 2016 Apr;6(42):35267-35279 93. [IF=3.263] Tian-Tian Zhu et al."Epigallocatechin-3-gallate ameliorates hypoxia-induced pulmonary vascular remodeling by promoting mitofusin-2-mediated mitochondrial fusion."Eur J Pharmacol. 2017 Aug;809:42 94. [IF=3.24] Shihui Wang et al."Molecular Interactions between (−)-Epigallocatechin Gallate Analogs and Pancreatic Lipase."Plos One. 2014 Nov;9(11):e111143 95. [IF=3.06] Zeyi Ai et al."Effect of Stereochemical Configuration on the Transport and Metabolism of Catechins from Green Tea across Caco-2 Monolayers."Molecules. 2019 Jan;24(6):1185 96. [IF=2.882] Ying Zhang et al."Biotransformation on the flavonolignan constituents of Silybi Fructus by an intestinal bacterial strain Eubacterium limosum ZL-II."Fitoterapia. 2014 Jan;92:61 97. [IF=2.675] Xiumin Chen et al."Isobavachalcone and bavachinin from Psoraleae Fructus modulate Aβ42 aggregation process through different mechanisms in vitro."Febs Lett. 2013 Sep;587(18):2930-2935 98. [IF=2.447] Haojia Huang et al."Effect of epigallocatechin-3-gallate on proliferation and phenotype maintenance in rabbit articular chondrocytes in vitro."Exp Ther Med. 2015 Jan;9(1):213-218 99. [IF=2.352] Rong-zu Nie et al."Comparison of disaggregative effect of A-type EGCG dimer and EGCG monomer on the preformed bovine insulin amyloid fibrils."Biophys Chem. 2017 Nov;230:1 100. [IF=1.851] Li‑Li Tao et al."TSA increases C/EBP‑α expression by increasing its lysine acetylation in hepatic stellate cells."Mol Med Rep. 2017 Nov;16(5):6088-6093 101. [IF=1.785] Pan Jin et al."Role of (-)-epigallocatechin-3-gallate in the osteogenic differentiation of human bone marrow mesenchymal stem cells: An enhancer or an inducer?."Exp Ther Med. 2015 Aug;10(2):828-834 102. [IF=1.291] Jiao-Li Zhang et al."Propofol inhibits hypoxia/reoxygenation-induced human gastric epithelial cell injury by suppressing the Toll-like receptor 4 pathway."Kaohsiung J Med Sci. 2013 Jun;29:289 103. [IF=9.147] Tingting Feng et al."Food-grade Pickering emulsions and high internal phase Pickering emulsions encapsulating cinnamaldehyde based on pea protein-pectin-EGCG complexes for extrusion 3D printing."Food Hydrocolloid. 2022 Mar;124:107265 104. [IF=9.147] Jianzhong Zhu et al."Effect of Rosa Roxburghii juice on starch digestibility: A focus on the binding of polyphenols to amylose and porcine pancreatic α-amylase by molecular modeling."Food Hydrocolloid. 2022 Feb;123:106966 105. [IF=9.147] Xin-Sheng Qin et al."An enhanced pH-sensitive carrier based on alginate-Ca-EDTA in a set-type W1/O/W2 double emulsion model stabilized with WPI-EGCG covalent conjugates for probiotics colon-targeted release."Food Hydrocolloid. 2021 Apr;113:106460 106. [IF=7.79] Simeng Liu et al."Adoptive CD8+T-cell grafted with liposomal immunotherapy drugs to counteract the immune suppressive tumor microenvironment and enhance therapy for melanoma."Nanoscale. 2021 Oct;13(37):15789-15803 107. [IF=7.514] Yinyin Liao et al."Visualized analysis of within-tissue spatial distribution of specialized metabolites in tea (Camellia sinensis) using desorption electrospray ionization imaging mass spectrometry."Food Chem. 2019 Sep;292:204 108. [IF=7.514] Wandi Cao et al."Effects of epigallocatechin gallate on the stability, dissolution and toxicology of ZnO nanoparticles."Food Chem. 2022 Mar;371:131383 109. [IF=7.514] Wenyang Tao et al."Extraction and identification of proanthocyanidins from the leaves of persimmon and loquat."Food Chem. 2022 Mar;372:130780 110. [IF=7.514] Mingchun Wen et al."Identification of 4-O-p-coumaroylquinic acid as astringent compound of Keemun black tea by efficient integrated approaches of mass spectrometry, turbidity analysis and sensory evaluation."Food Chem. 2022 Jan;368:130803 111. [IF=7.514] Pei Pu et al."Six flavonoids inhibit the antigenicity of β-lactoglobulin by noncovalent interactions: A spectroscopic and molecular docking study."Food Chem. 2021 Mar;339:128106 112. [IF=7.514] Zhongqin Chen et al."Insight into the inactivation mechanism of soybean Bowman-Birk trypsin inhibitor (BBTI) induced by epigallocatechin gallate and epigallocatechin: Fluorescence, thermodynamics and docking studies."Food Chem. 2020 Jan;303:125380 113. [IF=7.514] Xiaoyue Yu et al."Role of epigallocatechin gallate in collagen hydrogels modification based on physicochemical characterization and molecular docking."Food Chem. 2021 Oct;360:130068 114. [IF=7.514] Piaopiao Long et al."Untargeted and targeted metabolomics reveal the chemical characteristic of pu-erh tea (Camellia assamica) during pile-fermentation."Food Chem. 2020 May;311:125895 115. [IF=7.514] Hujun Xie et al."Fabrication of Zein-Lecithin-EGCG complex nanoparticles: Characterization, controlled release in simulated gastrointestinal digestion."Food Chem. 2021 Dec;365:130542 116. [IF=7.514] Si-Duo Zhou et al."Soy protein isolate -(-)-epigallocatechin gallate conjugate: Covalent binding sites identification and IgE binding ability evaluation."Food Chem. 2020 Dec;333:127400 117. [IF=7.514] Jinling Li et al."Double-crosslinked effect of TGase and EGCG on myofibrillar proteins gel based on physicochemical properties and molecular docking."Food Chem. 2021 May;345:128655 118. [IF=7.514] Xin Song et al."Comparing the inhibitory abilities of epigallocatechin-3-gallate and gallocatechin gallate against tyrosinase and their combined effects with kojic acid."Food Chem. 2021 Jul;349:129172 119. [IF=7.514] Huijun Wang et al."Untargeted metabolomics coupled with chemometrics approach for Xinyang Maojian green tea with cultivar, elevation and processing variations."Food Chem. 2021 Aug;352:129359 120. [IF=7.514] Jian Gao et al."Preparation of β-lactoglobulin/gum arabic complex nanoparticles for encapsulation and controlled release of EGCG in simulated gastrointestinal digestion model."Food Chem. 2021 Aug;354:129516 121. [IF=7.46] Yuqiu Zi et al."Aggregation-enhanced emission of metal nanoclusters triggered by peptide self-assembly and application in chymotrypsin inhibitor screening."Sensor Actuat B-Chem. 2021 Oct;345:130243 122. [IF=7.053] Yinxia Chen et al."Foam and conformational changes of egg white as affected by ultrasonic pretreatment and phenolic binding at neutral pH."Food Hydrocolloid. 2020 May;102:105568 123. [IF=6.953] Yifan Chang et al."Improved viability of Akkermansia muciniphila by encapsulation in spray dried succinate-grafted alginate doped with epigallocatechin-3-gallate."Int J Biol Macromol. 2020 Sep;159:373 124. [IF=6.953] Chao Jiang et al."Three flavanols delay starch digestion by inhibiting α-amylase and binding with starch."Int J Biol Macromol. 2021 Mar;172:503 125. [IF=6.475] Zhenming Yu et al."Transformation of catechins into theaflavins by upregulation of CsPPO3 in preharvest tea (Camellia sinensis) leaves exposed to shading treatment."Food Res Int. 2020 Mar;129:108842 126. [IF=6.475] Mingchun Wen et al."Quantitative changes in monosaccharides of Keemun black tea and qualitative analysis of theaflavins-glucose adducts during processing."Food Res Int. 2021 Oct;148:110588 127. [IF=6.475] Shuyuan Liu et al."Comparative studies on the physicochemical profile and potential hypoglycemic activity of different tea extracts: Effect on sucrase-isomaltase activity and glucose transport in Caco-2 cells."Food Res Int. 2021 Oct;148:110604 128. [IF=6.306] Tingting Feng et al."High internal phase pickering emulsions stabilized by pea protein isolate-high methoxyl pectin-EGCG complex: Interfacial properties and microstructure."Food Chem. 2021 Jul;350:129251 129. [IF=5.923] Suqi Hao et al."EGCG-Mediated Potential Inhibition of Biofilm Development and Quorum Sensing in Pseudomonas aeruginosa."Int J Mol Sci. 2021 Jan;22(9):4946 130. [IF=5.81] Mu Jianfei et al."Determination of Polyphenols in Ilex kudingcha and Insect Tea (Leaves Altered by Animals) by Ultra-high-performance Liquid Chromatography-Triple Quadrupole Mass Spectrometry (UHPLC-QqQ-MS) and Comparison of Their Anti-Aging Effects."Fro 131. [IF=5.396] Jinling Li et al."Interaction of myofibrillar proteins and epigallocatechin gallate in the presence of transglutaminase in solutions."Food Funct. 2020 Nov;11(11):9560-9572 132. [IF=5.279] Zongde Jiang et al."Model Studies on the Reaction Products Formed at Roasting Temperatures from either Catechin or Tea Powder in the Presence of Glucose."J Agr Food Chem. 2021;69(38):11417–11426 133. [IF=5.279] Yinyin Liao et al."Effect of Major Tea Insect Attack on Formation of Quality-Related Nonvolatile Specialized Metabolites in Tea (Camellia sinensis) Leaves."J Agr Food Chem. 2019;67(24):6716–6724 134. [IF=5.279] Shanshan Wang et al."Enhancement of Antioxidant Activity in O/W Emulsion and Cholesterol-Reducing Capacity of Epigallocatechin by Derivatization with Representative Phytosterols."J Agr Food Chem. 2019;67(45):12461–12471 135. [IF=5.279] Huan Zhang et al."Metabolite and Microbiome Profilings of Pickled Tea Elucidate the Role of Anaerobic Fermentation in Promoting High Levels of Gallic Acid Accumulation."J Agr Food Chem. 2020;68(47):13751–13759 136. [IF=5.279] Hui Li et al."Relationship between Secondary Metabolism and miRNA for Important Flavor Compounds in Different Tissues of Tea Plant (Camellia sinensis) As Revealed by Genome-Wide miRNA Analysis."J Agr Food Chem. 2021;69(6):2001–2012 137. [IF=4.952] Wangchen Zhao et al."Preparation and characterization of epigallocatechin-3-gallate loaded melanin nanocomposite (EGCG @MNPs) for improved thermal stability, antioxidant and antibacterial activity."Lwt Food Sci Technol. 2022 Jan;154:112599 138. [IF=4.952] Jia Xue et al."Contrasting microbiomes of raw and ripened Pu-erh tea associated with distinct chemical profiles."Lwt Food Sci Technol. 2020 Apr;124:109147 139. [IF=4.952] Jiachun Zheng et al."Free radical grafting of whey protein isolate with tea polyphenol: Synthesis and changes in structural and functional properties."Lwt Food Sci Technol. 2022 Jan;153:112438 140. [IF=4.952] Fengfeng Qu et al."The new insight into the influence of fermentation temperature on quality and bioactivities of black tea."Lwt Food Sci Technol. 2020 Jan;117:108646 141. [IF=4.952] Tingting Feng et al."Plant protein-based antioxidant Pickering emulsions and high internal phase Pickering emulsions against broad pH range and high ionic strength: Effects of interfacial rheology and microstructure."Lwt Food Sci Technol. 2021 Oct;150:111 142. [IF=4.952] Xujie Wang et al."Preparation, characterization and activity of tea polyphenols-zinc complex."Lwt Food Sci Technol. 2020 Sep;131:109810 143. [IF=4.879] Guopeng Wang et al."Utilizing the Combination of Binding Kinetics and Micro-Pharmacokinetics Link in Vitro α-Glucosidase Inhibition to in Vivo Target Occupancy."Biomolecules. 2019 Sep;9(9):493 144. [IF=4.759] Yi Zhang et al."Screening of inhibitors against histone demethylation jumonji domain-containing protein 3 by capillary electrophoresis."J Chromatogr A. 2020 Feb;1613:460625 145. [IF=4.653] Fengfeng Qu et al."Comparison of the Effects of Green and Black Tea Extracts on Na+/K+‐ATPase Activity in Intestine of Type 1 and Type 2 Diabetic Mice."Mol Nutr Food Res. 2019 Sep;63(17):1801039 146. [IF=4.545] Huaqiao Tang et al."Epigallocatechin-3-gallate protects immunity and liver drug-metabolism function in mice loaded with restraint stress."Biomed Pharmacother. 2020 Sep;129:110418 147. [IF=4.379] Zhang Sifeng et al."Prediction of suitable brewing cuppages of Dahongpao tea based on chemical composition, liquor colour and sensory quality in different brewing."Sci Rep-Uk. 2020 Jan;10(1):1-11 148. [IF=4.379] Feng Lin et al."Chemical profile changes during pile fermentation of Qingzhuan tea affect inhibition of α-amylase and lipase."Sci Rep-Uk. 2020 Feb;10(1):1-10 149. [IF=4.35] Qian Ge et al."Effects of Simultaneous Co-Fermentation of Five Indigenous Non-Saccharomyces Strains with S. cerevisiae on Vidal Icewine Aroma Quality."Foods. 2021 Jul;10(7):1452 150. [IF=4.329] Haiying Feng et al."The Effect of (−)-Epigallocatechin-3-Gallate Non-Covalent Interaction with the Glycosylated Protein on the Emulsion Property."Polymers-Basel. 2019 Oct;11(10):1688 151. [IF=4.27] Jieren Liao et al."GABA shunt contribution to flavonoid biosynthesis and metabolism in tea plants (Camellia sinensis)."Plant Physiol Bioch. 2021 Sep;166:849 152. [IF=4.171] Xing Zhang et al."Molecular mechanisms of selenium-biofortified soybean protein and polyphenol conjugates in protecting mouse skin damaged by UV-B."Food Funct. 2020 Apr;11(4):3563-3573 153. [IF=4.098] Chunlin Li et al."Discrimination of white teas produced from fresh leaves with different maturity by near-infrared spectroscopy."Spectrochim Acta A. 2020 Feb;227:117697 154. [IF=3.943] Qiaohua Yan et al."Epigallocatechin-3-gallate reduces liver and immune system damage in Acinetobacter baumannii-loaded mice with restraint stress."Int Immunopharmacol. 2021 Mar;92:107346 155. [IF=3.833] Jin Li et al."Simultaneous determination of the pharmacokinetics of A-type EGCG and ECG dimers in mice plasma and its metabolites by UPLC-QTOF-MS."Int J Food Sci Nutr. 2020;71(2):211-220 156. [IF=3.638] Jiazheng Lin et al."Effect of red light on the composition of metabolites in tea leaves during the withering process using untargeted metabolomics."Journal Of The Science Of Food And Agriculture. 2021 Sep 04 157. [IF=3.361] Mengmeng Yuan et al."The interaction of dietary flavonoids with xanthine oxidase in vitro: molecular property-binding affinity relationship aspects."Rsc Adv. 2019 Apr;9(19):10781-10788 158. [IF=3.361] Jubing Wang et al."Improvement of protein emulsion stability through glycosylated black bean protein covalent interaction with (−)-epigallocatechin-3-gallate."Rsc Adv. 2021 Jan;11(4):2546-2555 159. [IF=3.216] Sina Qin et al."Cerebral protection of epigallocatechin gallate (EGCG) via preservation of mitochondrial function and ERK inhibition in a rat resuscitation model."Drug Des Dev Ther. 2019; 13: 2759–2768 160. [IF=3.167] Xingliang Xiang et al."The hypoglycemic effect of extract/fractions from Fuzhuan Brick-Tea in streptozotocin-induced diabetic mice and their active components characterized by LC-QTOF-MS/MS."J Food Sci. 2020 Sep;85(9):2933-2942 161. [IF=2.896] Li Wang et al."Separation of epigallocatechin gallate and epicatechin gallate from tea polyphenols by macroporous resin and crystallization."Anal Methods-Uk. 2021 Feb;13(6):832-842 162. [IF=2.863] Penghui Yu et al."Distinct variation in taste quality of Congou black tea during a single spring season."Food Sci Nutr. 2020 Apr;8(4):1848-1856 163. [IF=2.863] Qiaoran Zheng et al."Optimizing synchronous extraction and antioxidant activity evaluation of polyphenols and polysaccharides from Ya'an Tibetan tea (Camellia sinensis)."Food Sci Nutr. 2020 Jan;8(1):489-499 164. [IF=2.72] Wenfeng Li et al."Citric acid-enhanced dissolution of polyphenols during soaking of different teas."J Food Biochem. 2019 Dec;43(12):e13046 165. [IF=2.45] Zhu Kai et al."Preventive Effect of Liupao Tea Polyphenols on HCl/Ethanol-Induced Gastric Injury in Mice."J Food Quality. 2020;2020:5462836 166. [IF=2.431] Wang Yanfeng et al."Effects of temperature and ultrasonic scaler on the infusion process of green tea leaves and catechins stability under ultrasonic vibration."J Food Meas Charact. 2021 Aug;15(4):3598-3607 167. [IF=2.19] Qiaoran Zheng et al."The effect of storage time on tea Polyphenols, catechin compounds, total flavones and the biological activity of Ya’an Tibetan tea (Camellia sinensis)."Journal Of Food Processing And Preservation. 2021 Oct 11 168. [IF=0.986] Lingli Sun et al."Phytochemical Profiles and Bioactivities of Cake Tea Leaves Obtained From the Same Cultivar: A Comparative Analysis:."Nat Prod Commun. 2020;15(8): 169. [IF=5.396] Miao Hu et al.Sodium alginate/soybean protein–epigallocatechin-3-gallate conjugate hydrogel beads: evaluation of structural, physical, and functional properties.Food Funct. 2021 Dec;12(24):12347-12361 170. [IF=4.411] Peng-Cheng Zheng et al.Untargeted Metabolomics Combined with Bioassay Reveals the Change in Critical Bioactive Compounds during the Processing of Qingzhuan Tea.Molecules. 2021 Jan;26(21):6718 171. [IF=4.411] Shuang Mei et al."The Physiology of Postharvest Tea (Camellia sinensis) Leaves, According to Metabolic Phenotypes and Gene Expression Analysis."Molecules. 2022 Jan;27(5):1708 172. [IF=7.514] Yuqing Cui et al."Identification of low-molecular-weight color contributors of black tea infusion by metabolomics analysis based on UV–visible spectroscopy and mass spectrometry."Food Chem. 2022 Aug;386:132788 173. [IF=6.475] Guoping Lai et al."Free, soluble conjugated and insoluble bonded phenolic acids in Keemun black tea: From UPLC-QQQ-MS/MS method development to chemical shifts monitoring during processing."Food Res Int. 2022 May;155:111041 174. [IF=7.514] Hujun Xie et al."Preparation of zein-lecithin-EGCG complex nanoparticles stabilized peppermint oil emulsions: Physicochemical properties, stability and intelligent sensory analysis."Food Chem. 2022 Jul;383:132453 175. [IF=7.514] Liying Chen et al."Activation mechanism of whey protein isolate mediated by free radicals generated in the ascorbic acid/hydrogen peroxide system."Food Chem. 2022 Aug;384:132533 176. [IF=3.463] Ping Wang et al."Systematic transcriptomic and metabolomic analysis of walnut (Juglans regia L.) fruit to trace variations in antioxidant activity during ripening."Sci Hortic-Amsterdam. 2022 Mar;295:110849 177. [IF=4.556] Yiyu Ren et al."Metabolomics, sensory evaluation, and enzymatic hydrolysis reveal the effect of storage on the critical astringency-active components of crude Pu-erh tea."J Food Compos Anal. 2022 Apr;107:104387 178. [IF=6.576] Guowei Man et al."Profiling Phenolic Composition in Pomegranate Peel From Nine Selected Cultivars Using UHPLC-QTOF-MS and UPLC-QQQ-MS."Front Nutr. 2021; 8: 807447 179. [IF=6.576] Juxin Pei et al."Effect of Gum Tragacanth-Sodium Alginate Active Coatings Incorporated With Epigallocatechin Gallate and Lysozyme on the Quality of Large Yellow Croaker at Superchilling Condition."Front Nutr. 2021; 8: 812741 180. [IF=6.953] Wenqing Li et al."Preparation, characterization and releasing property of antibacterial nano-capsules composed of ε-PL-EGCG and sodium alginate-chitosan."Int J Biol Macromol. 2022 Apr;204:652 181. [IF=7.514] Zisheng Han et al."LC-MS based metabolomics and sensory evaluation reveal the critical compounds of different grades of Huangshan Maofeng green tea."Food Chem. 2022 Apr;374:131796 182. [IF=5.396] Chunyin Qin et al."Comparison on the chemical composition, antioxidant, anti-inflammatory, α-amylase and α-glycosidase inhibitory activities of the supernatant and cream from black tea infusion."Food & Function. 2022 Apr;: 183. [IF=5.64] Tang H et al."Epigallocatechin-3-Gallate Ameliorates Acute Lung Damage by Inhibiting Quorum-Sensing-Related Virulence Factors of Pseudomonas aeruginosa.."Frontiers in Microbiology. 2022 Apr;13:874354-874354 184. [IF=5.154] Erdong Yuan et al."Roles of Adinandra nitida (Theaceae) and camellianin A in HCl/ethanol-induced acute gastric ulcer in mice."Food Science and Human Wellness. 2022 Jul;11:1053 185. [IF=6.576] Junkun Pan et al."Inhibition of Dipeptidyl Peptidase-4 by Flavonoids: Structure–Activity Relationship, Kinetics and Interaction Mechanism."Frontiers in Nutrition. 2022; 9: 892426 186. [IF=9.381] Wangchen Zhao et al."Chitosan based film reinforced with EGCG loaded melanin-like nanocomposite (EGCG@MNPs) for active food packaging."Carbohyd Polym. 2022 Apr;:119471 |
淡黄色至茶褐色略带茶叶香味的水溶液,脱水后为灰白色粉状固体或结晶,具涩味。略吸潮,易溶于水、乙醇、乙酸乙酯等极性较强的溶剂,微溶于油脂等弱极性溶剂。本身具有弱酸性,其水溶液pH值约为3~4。耐热及耐酸性较好,在pH2~7范围内稳定,耐光及耐碱性差,在pH>8或光照下易氧化聚合。对真菌、酵母、乳酸菌及醋酸菌均无抑制作用,但可有效地抑制引起龋齿的口腔变异
链球菌。此外,茶多酚具有抗氧化、抗癌变、清除自由基、降血压与降胆固醇等生物学功能。
从茶叶中提取茶多酚的方法主要有沉淀分离法、吸附分离法、有机溶剂提取法、低温纯化酶提取法、盐析法等,新发展的方法有超临界溶剂提取法等。这里介绍最常用的钙盐沉淀分离法。茶叶粉碎后在萃取釜中用80℃热水浸泡30min,过滤,再用少量沸水洗涤滤饼,将洗涤液与滤液合并,滤饼干燥后可提咖啡因等其他成分。滤液倒入沉淀容器中,按滤液:石灰水:食盐水-1:6:5左右的比例加入饱和石灰水和饱和石灰水和饱和食盐水,充分搅拌后静置30 min,过滤。再将滤饼置于酸化器中,加入0. 5%~0.8%的H2 S04,调节pH一7.1~7.2,然后用乙酸或柠檬酸调pH值至7.O,充分搅拌,然后静置30min,过滤,水洗,滤液经喷雾干燥可得成品。
可用作食品抗氧化剂和防腐剂,广泛用于动植物油脂、水产品、饮料、糖果、乳制品、油炸食品、调味品、化妆品及功能性食品的抗氧化,还具有消除异味,防腐保鲜等作用。如果使用对象为脂
溶性,可将茶多酚溶于95%食品乙醇配成溶液后加入。若使用对象为水溶性,可直接将茶多酚加入或溶于水后加入,对肉制品可直接用0. 05%茶多酚溶液浸渍或喷涂。
微信搜索化工百科或扫描下方二维码,添加化工百科小程序,随时随地查信息!