RSL3RSL3
MedChemExpress (MCE)
HY-100218A
1219810-16-8
(1S,3R)-RSL3
99.90%
4°C, sealed storage, away from moisture *In solvent : -80°C, 2 years
-20°C, 1 year (sealed storage, away from moisture)
Room temperature in continental US
may vary elsewhere.
RSL3 ((1S,3R)-RSL3) is an inhibitor of glutathione peroxidase 4 (GPX4) (ferroptosis activator), reduces the expression of GPX4 protein, and induces ferroptotic death of head and neck cancer cell. RSL3 increases the expression of p62 and Nrf2 and inactivates Keap1 in HN3-rslR cells.
RSL3 (0-8 μM, 72 hours) potently reduces the viability of HN3 cells, with IC50s of 0.48 μM in HN3 and 5.8 μM in HN3-rslR cells, respectively[1]. RSL3 (0-8 μM, 24 hours) reduces the expression of GPX4 protein, increases the expression of p62 and Nrf2 and inactivates Keap1 in HN3-rslR cells[1]. Ferroptosis-sensitive Cell Lines Ferroptosis-sensitive Cells Test Conditions MCF10A-RAS[2] 0-10 μM
48 h MDA-MB-468[3] 0.1-1 μM
24 h PC-3[3] 0.01-1 μM
24 h Huh-7[3] 0.01-1 μM
24 h Raji[3] 0.01-1 μM
24 h MEF[3] 0.1-100 nM
24 h HT-22 neuron[4] 200 nM
16 h NCI-H508[5] 0.1-10 μM
48 h LoVo[5] 0.1-10 μM
48 h LS513[5] 0.1-10 μM
48 h SW480[5] 0.1-10 μM
48 h SW620[5] 0.1-10 μM
48 h SW1116[5] 0.1-10 μM
48 h DLD-1[5] 0.1-10 μM
48 h Caco-2[5] 0.1-10 μM
48 h HT-1080[6] 0-10 μM
48 h
IC50 1.55 μM MDA-MB-436[7] 0.1-2 μM
24 h HT-29[7] 0.1-2 μM
24 h U-373[7] 0.1-2 μM
24 h A549[8] 1 nM-100 μM
24 h
IC50 0.5 μM H1975[8] 1 nM-100 μM
24 h
IC50 150 nM MAD-MB-231[9] 0-10 μM
96 h
IC50 0.71 μM HCC1937[9] 0-10 μM
96 h
IC50 0.85 μM Ferroptosis-insensitive Cell Lines Ferroptosis-insensitive Cells Test Conditions HS578T[10] 0-2.5 μM
24 h MCF10A[10] 0-2.5 μM
24 h
RSL3 (100 mg/kg, Intratumorally twice per week for 20 days) significantly inhibits the growth of tumor in combination with Trigonelline (HY-N0414) in mice bearing HN3R cells[1].
Glutathione peroxidase 4[1] Cellular Effect Cell Line Type Value Description References
| | | |
| | | | | |
[1]. Shin D, et al. Nrf2 inhibition reverses resistance to GPX4 inhibitor-induced ferroptosis in head and neck cancer. Free Radic Biol Med. 2018 Dec
129:454-462. [Content Brief]
[2]. Romani P, et al., Mitochondrial fission links ECM mechanotransduction to metabolic redox homeostasis and metastatic chemotherapy resistance. Nat Cell Biol. 2022 Feb
24(2):168-180. [Content Brief]
[3]. Zhang Z, et al., CGI1746 targets σ1R to modulate ferroptosis through mitochondria-associated membranes. Nat Chem Biol. 2024 Jan 11. [Content Brief]
[4]. Chen T, et al., Mitochondrial transplantation rescues neuronal cells from ferroptosis. Free Radic Biol Med. 2023 Nov 1
208:62-72. [Content Brief]
[5]. Zhu JF, et al., Ibrutinib facilitates the sensitivity of colorectal cancer cells to ferroptosis through BTK/NRF2 pathway. Cell Death Dis. 2023 Feb 23
14(2):151. [Content Brief]
[6]. Song H, et al., A potent GPX4 degrader to induce ferroptosis in HT1080 cells. Eur J Med Chem. 2024 Feb 5
265:116110. [Content Brief]
[7]. Zheng J, et al., Sorafenib fails to trigger ferroptosis across a wide range of cancer cell lines. Cell Death Dis. 2021 Jul 13
12(7):698. [Content Brief]
[8]. Cheff DM, et al., The ferroptosis inducing compounds RSL3 and ML162 are not direct inhibitors of GPX4 but of TXNRD1. Redox Biol. 2023 Jun
62:102703. [Content Brief]
[9]. Li P, et al., Inhibition of cannabinoid receptor type 1 sensitizes triple-negative breast cancer cells to ferroptosis via regulating fatty acid metabolism. Cell Death Dis. 2022 Sep 21
13(9):808. [Content Brief]
[10]. Brown CW, et al., Prominin2 Drives Ferroptosis Resistance by Stimulating Iron Export. Dev Cell. 2019 Dec 2
51(5):575-586.e4. [Content Brief]