中文名 | 叶黄素 |
英文名 | xanthophyll from alfalfa |
别名 | 金盏花提取液 叶黄素 胡萝卜醇 万寿菊提取物 叶黄素酯粉末 金盏花提取物 叶黄素,万寿菊提取物 二羟基-D-胡萝卜素(高纯) 二羟基-D-胡萝卜素(标准品) 二羟基-D-胡萝卜素,9-胡萝烯-3-3'-二醇 金盏花浸泡油 |
英文别名 | beta, Lutein E 161b SAG-1000 Xanthophyll Gamma-Lutein beta,e-carotene-3, XANTHOPHYLL FROM CORN xanthophyllfromalfalfa xanthophyll from alfalfa beta,e-carotene-3,3'-diol 3,3-Dihydroxy-alpha-carotene Xanthophyll, In Corn Oil Base beta,epsilon-carotene-3,3-diol beta,epsilon-carotene-3,3'-diol 4,5-didehydro-5,6-dihydro-beta,beta-carotene-3,3'-diol epsilon-carotene-3,3'-diol,(3theta,3'theta,6'theta)-bet (3R,3'S,6R)-4,5-didehydro-5,6-dihydro-beta,beta-carotene-3,3'-diol (3R,3'R,6R)-4,5-didehydro-5,6-dihydro-beta,beta-carotene-3,3'-diol (3R,6'R)-4',5'-didehydro-5',6'-dihydro-beta,beta-carotene-3,3'-diol Calendula Infused Oil |
CAS | 127-40-2 |
EINECS | 204-840-0 |
化学式 | C40H56O2 |
分子量 | 568.87 |
InChI | InChI=1/C40H56O2/c1-29(17-13-19-31(3)21-23-37-33(5)25-35(41)27-39(37,7)8)15-11-12-16-30(2)18-14-20-32(4)22-24-38-34(6)26-36(42)28-40(38,9)10/h11-25,35-37,41-42H,26-28H2,1-10H3/b12-11+,17-13+,18-14+,23-21+,24-22+,29-15+,30-16+,31-19+,32-20+/t35?,36-,37+/m1/s1 |
InChIKey | KBPHJBAIARWVSC-RGZFRNHPSA-N |
密度 | 0.9944 (rough estimate) |
熔点 | 195 °C |
沸点 | 572.66°C (rough estimate) |
比旋光度 | 18Cd +165° (c = 0.7 in benzene) |
闪点 | 269.1±27.5 °C |
蒸汽压 | 8.45E-23mmHg at 25°C |
溶解度 | 氯仿 (微溶),二氯甲烷 (微溶),甲醇 (微溶,加热,S |
折射率 | n20/D1.361-1.363 |
酸度系数 | 14.61±0.70(Predicted) |
存储条件 | -20°C |
稳定性 | 光敏,温度敏感 |
敏感性 | Sensitive to air |
外观 | 固体 |
颜色 | Red to Very Dark Red |
最大波长(λmax) | ['λ: 441-451 nm Amax'] |
Merck | 13,10120 |
BRN | 2068547 |
物化性质 | 具金属光泽的结晶。 不溶于水。溶于油性溶剂。 |
MDL号 | MFCD00017353 |
危险品标志 | Xi - 刺激性物品 |
风险术语 | R36/37/38 - 刺激眼睛、呼吸系统和皮肤。 R11 - 高度易燃。 |
安全术语 | S26 - 不慎与眼睛接触后,请立即用大量清水冲洗并征求医生意见。 S37/39 - 戴适当的手套和护目镜或面具。 S16 - 远离火源。 S7 - 保持容器密封。 S24/25 - 避免与皮肤和眼睛接触。 |
WGK Germany | 3 |
FLUKA BRAND F CODES | 1-8-10-16 |
海关编号 | 29061990 |
上游原料 | 2-丁酮 硅油 六甲基二硅氧烷 |
参考资料 展开查看 | 1. 黄昕蕾 王雁 张辉.3种石斛属植物类胡萝卜素成分及代谢途径分析[J].林业科学研究 2019 32(05):107-113. 2. 吕美 孙一甲 徐一楠 等. HPLC法测定禽蛋蛋黄中玉米黄质和叶黄素[J]. 食品工业 2019(6). 3. 焦岩 常影 林巍 景文娟 李大婧.三聚磷酸钠修饰叶黄素纳米脂质体及释放性能研究[J].食品工业 2017 38(12):63-67. 4. 高蓓蓓 金立 李悦 等. 不同储藏条件下铁皮石斛花中色素类成分的变化规律研究[J]. 中国中药杂志 2020 v.45(04):127-135. 5. 焦岩 李大婧 刘春泉 等. 叶黄素纳米脂质体的制备工艺优化及其氧化稳定性[J]. 食品科学 2017 38(018):259-265. 6. 卢礼萍 李明 刘桂玲 等. 叶黄素聚集体吸收光谱的实验分析与理论模拟[J]. 光谱学与光谱分析 2016(36):3291. 7. 陈东洋, 张昊, 冯家力,等. 固相萃取-高效液相色谱法测定禽蛋中斑蝥黄和叶黄素[J]. 中国食品卫生杂志, 2020, v.32(01):51-55. 8. 魏良淑, 吴芳, 蒋夕平,等. 基于紫外-可见光谱法研究叶黄素聚集体结构及其动力学[J]. 光谱学与光谱分析, 2018, 38(12):150-154. 9. 方明, 孙志高, 于奉生,等. 微波皂化法提取桔皮中类胡萝卜素及其组分分析[J]. 食品与发酵工业, 2019, 45(08):119-126. 10. 于奉生, 孙志高, 方明,等. 杀菌对柑橘汁中类胡萝卜素及色泽的影响[J]. 食品与发酵工业, 2019, 45(07):225-232+238. 11. 樊金玲, 杨睿, 孙晓菲,等. 榆树叶中类胡萝卜素的组成和含量[J]. 食品科学, 36(2). 12. 李小丽, 梁远学, 郜凌超,等. 油棕果实不同发育时期类胡萝卜素的含量变化[J]. 华中农业大学学报, 2015, 34(1):23-27. 13. 焦岩, 韩赫, 常影,等. 玉米醇溶蛋白负载叶黄素纳米粒的制备与表征[J]. 食品与机械, 2019(7):7-12. 14. 李季楠, 胡浩, 吴雪娇,等. 环境因素对叶黄素纳米乳液稳定性及其抗氧化活性的影响[J]. 食品科学, 2019, 40(19). 15. 张颖,陈华翰,李春美.番茄中类胡萝卜素及其顺式异构体的HPLC分析[J].分析测试学报,2016,35(04):448-453. 16. 焦岩, 李大婧, 刘春泉,等. 纳米脂质体提高叶黄素的稳定性[J]. 食品工业, 2019, 040(004):24-27. 17. 陈叶, 戴竹青, 宋江峰,等. 胶束化对Caco-2上皮细胞叶黄素吸收和转运的影响[J]. 食品工业科技, 2019, v.40;No.436(20):310-315. 18. 李静文, 马静, 却枫,等. 芹菜中类胡萝卜素合成相关番茄红素ε–环化酶基因AgLCYE的克隆与表达分析[J]. 园艺学报, 2018. 19. 赵永平, 钟娇娇, 朱亚,等. 超临界CO2法萃取万寿菊中叶黄素的工艺优化研究[J]. 陕西农业科学, 2016, 62(012):70-72. 20. 钟碧萍, 黄宏南. 高效液相内标法同时测定保健食品中叶黄素和β-胡萝卜素的含量[J]. 海峡药学, 2013, 25(009):101-103. 21. 刘跃芹, 赵雪松, 吴杰,等. 高效液相色谱法测定玉米浆干粉中维生素B6的含量[J]. 食品工业科技, 2013(24):61-63. 22. 穆青 陈亚淑 谢笔钧 杨季芳 陈吉刚 孙智达.北极海洋红球菌B7740(Rhodococcus sp.)产类胡萝卜素和类异戊二烯醌的抗氧化、抗增殖活性[J].食品科学 2018 39(11):159-164. 23. 孟繁玲,张宇,徐少博,赵宏,王宇亮,赵芷萌,张曼.南瓜中游离叶黄素的制备及抗氧化活性[J].食品与生物技术学报,2020,39(08):81-88. 24. 虞昕磊. 鲜叶摊放方式对绿茶色、香、味品质成分代谢的影响研究[D].华中农业大学,2020. 25. 焦岩,高嘉宁,常影,佟佳路,韩赫,景文娟.叶黄素纳米脂质体的多聚赖氨酸修饰及其体外释放性能[J].中国油脂,2021,46(03):62-67. 26. 李秀鑫,吴红艳,于晓丹,翟丽萍.影响叶黄素稳定性的因素[J].食品工业,2020,41(10):71-74. 27. 常影,焦岩,刘庆松,刘庆明,孙晓宏,韩赫.玉米肽负载叶黄素纳米粒的结构表征及释放性能研究[J].食品科技,2021,46(02):238-243. 28. 侯惠静,张晓燕,陈建波,柳昊杰,孟令莉,石振鹏,吴子健,赵伟.BSA-葡聚糖-叶黄素纳米颗粒的制备及其抗氧化活性[J].食品研究与开发,2020,41(20):137-145. 29. Liu, Zhongbo, et al. "Fabrication and characterization of food-grade Pickering high internal emulsions stabilized with β-cyclodextrin." LWT 134 (2020): 110134.https://doi.org/10.1016/j.lwt.2020.110134 30. Lu, L., X. Ni, and X. Luo. "Influence of phenylalanine on carotenoid aggregation." Journal of Applied Spectroscopy 81.6 (2015): 1068-1072. 31. Ma, Jing, et al. "Distinct transcription profile of genes involved in carotenoid biosynthesis among six different color carrot (Daucus carota L.) cultivars." Acta biochimica et biophysica Sinica 49.9 (2017): 817-826.https://doi.org/10.1093/abbs/gmx081 32. Wang, Tingting, et al. "Combined process of reaction, extraction, and purification of lutein in marigold flower by isopropanol–KOH aqueous two-phase system." Separation Science and Technology 51.9 (2016): 1490-1498.https://doi.org/10.1080/01496395.2016.116 33. Li, Jing-Wen, et al. "Carotenoid accumulation and distinct transcript profiling of structural genes involved in carotenoid biosynthesis in celery." Plant Molecular Biology Reporter 36.4 (2018): 663-674.https://doi.org/10.1007/s11105-018-1112-0 34. [IF=7.514] Liangxiao Zhang et al."Simultaneous determination of tocopherols, carotenoids and phytosterols in edible vegetable oil by ultrasound-assisted saponification, LLE and LC-MS/MS."Food Chem. 2019 Aug;289:313 35. [IF=5.396] Feng Xue et al."In vivo antioxidant activity of carotenoid powder from tomato byproduct and its use as a source of carotenoids for egg-laying hens."Food Funct. 2013 Mar;4(4):610-617 36. [IF=5.396] Yan Jiao et al."Zein-derived peptides as nanocarriers to increase the water solubility and stability of lutein."Food Funct. 2018 Jan;9(1):117-123 37. [IF=5.309] Wanqiang Wu et al."Lutein suppresses inflammatory responses through Nrf2 activation and NF‐κB inactivation in lipopolysaccharide‐stimulated BV‐2 microglia."Mol Nutr Food Res. 2015 Sep;59(9):1663-1673 38. [IF=4.952] Yong-Hui Wang et al."Amphiphilic zein hydrolysate as a delivery vehicle: The role of xanthophylls."Lwt Food Sci Technol. 2017 Jun;79:463 39. [IF=4.5] Yanfei Liu et al."Biochemical and functional characterization of AcUFGT3a, a galactosyltransferase involved in anthocyanin biosynthesis in the red-fleshed kiwifruit (Actinidia chinensis)."Physiol Plantarum. 2018 Apr;162(4):409-426 40. [IF=4.499] Feng Xue et al."Encapsulation of tomato oleoresin with zein prepared from corn gluten meal."J Food Eng. 2013 Dec;119:439 41. [IF=4.411] Ai-Li Guo et al."Influence of Sulfur Fumigation on the Chemical Constituents and Antioxidant Activity of Buds of Lonicera japonica."Molecules. 2014 Oct;19(10):16640-16655 42. [IF=3.848] Ma Jing et al."Distinct transcription profile of genes involved in carotenoid biosynthesis among six different color carrot (Daucus carota L.) cultivars."Acta Bioch Bioph Sin. 2017 Sep;49(9):817-826 43. [IF=3.361] Yan Jiao et al."Polypeptide – decorated nanoliposomes as novel delivery systems for lutein."Rsc Adv. 2018 Sep;8(55):31372-31381 44. [IF=3.246] Chittasupho Chuda et al."Stability, Cytotoxicity, and Retinal Pigment Epithelial Cell Binding of Hyaluronic Acid-Coated PLGA Nanoparticles Encapsulating Lutein."Aaps Pharmscitech. 2019 Jan;20(1):1-13 45. [IF=2.896] Lu Wang et al."Rapid assay for testing superoxide anion radical scavenging activities to natural pigments by ultra-high performance liquid chromatography-diode-array detection method."Anal Methods-Uk. 2015 Feb;7(4):1535-1542 46. [IF=2.848] Bao-xing XIE et al."Supplemental blue and red light promote lycopene synthesis in tomato fruits."J Integr Agr. 2019 Mar;18:590 47. [IF=2.475] Tingting Wang et al."Combined process of reaction, extraction, and purification of lutein in marigold flower by isopropanol–KOH aqueous two-phase system."Sep Sci Technol. 2016;51(9):1490-1498 48. [IF=1.595] Li Jing-Wen et al."Carotenoid Accumulation and Distinct Transcript Profiling of Structural Genes Involved in Carotenoid Biosynthesis in Celery."Plant Mol Biol Rep. 2018 Aug;36(4):663-674 49. [IF=0.741] Lu L. et al."Influence of Phenylalanine on Carotenoid Aggregation."J Appl Spectrosc+. 2015 Jan;81(6):1068-1072 50. [IF=0.691] Lu Liping et al."Spectral analysis of interaction between carotenoid and tyrosine in ethanol-water solution."Russ J Phys Chem A+. 2015 Mar;89(3):417-422 51. [IF=9.229] Linlin Deng et al."Highly Crystalline Covalent Organic Frameworks Act as a Dual-Functional Fluorescent-Sensing Platform for Myricetin and Water, and Adsorbents for Myricetin."Acs Appl Mater Inter. 2021;13(28):33449–33463 52. [IF=9.147] Hao Li et al."Zein/soluble soybean polysaccharide composite nanoparticles for encapsulation and oral delivery of lutein."Food Hydrocolloid. 2020 Jun;103:105715 53. [IF=7.514] Xuehua Wang et al."Non-volatile and volatile metabolic profiling of tomato juice processed by high-hydrostatic-pressure and high-temperature short-time."Food Chem. 2022 Mar;371:131161 54. [IF=7.514] Ningxiang Yu et al."Development of composite nanoparticles from gum Arabic and carboxymethylcellulose-modified Stauntonia brachyanthera seed albumin for lutein delivery."Food Chem. 2022 Mar;372:131269 55. [IF=7.514] Zhaojing Jiang et al."Structuring of sunflower oil by stearic acid derivatives: Experimental and molecular modelling studies."Food Chem. 2020 Sep;324:126801 56. [IF=7.514] Zhuqing Dai et al."Study on the bioavailability of stevioside-encapsulized lutein and its mechanism."Food Chem. 2021 Aug;354:129528 57. [IF=6.992] Zhao Weihua et al."The transcription factor WRKY32 affects tomato fruit colour by regulating YELLOW FRUITED-TOMATO 1, a core component of ethylene signal transduction."J Exp Bot. 2021 May;72(12):4269-4282 58. [IF=5.753] Junwen Wang et al."Exogenous Application of 5-Aminolevulinic Acid Promotes Coloration and Improves the Quality of Tomato Fruit by Regulating Carotenoid Metabolism."Front Plant Sci. 2021; 12: 683868 59. [IF=5.396] Yu Xu et al."Nanoparticles based on carboxymethylcellulose-modified rice protein for efficient delivery of lutein."Food Funct. 2020 Mar;11(3):2380-2394 60. [IF=4.952] Mengjie Ma et al."Fabrication and characterization of zein/tea saponin composite nanoparticles as delivery vehicles of lutein."Lwt Food Sci Technol. 2020 May;125:109270 61. [IF=4.952] Zhongbo Liu et al."Fabrication and characterization of food-grade Pickering high internal emulsions stabilized with β-cyclodextrin."Lwt Food Sci Technol. 2020 Dec;134:110134 62. [IF=4.729] Weihua Zhao et al."Yellow-fruited phenotype is caused by 573 bp insertion at 5' UTR of YFT1 allele in yft1 mutant tomato."Plant Sci. 2020 Nov;300:110637 63. [IF=4.411] Litao Wang et al."Optimization of Ultrasonic-Assisted Extraction and Purification of Zeaxanthin and Lutein in Corn Gluten Meal."Molecules. 2019 Jan;24(16):2994 64. [IF=4.379] Song Hongxia et al."The genes crucial to carotenoid metabolism under elevated CO2 levels in carrot (Daucus carota L.)."Sci Rep-Uk. 2021 Jun;11(1):1-13 65. [IF=4.24] Xiao-Yu Ma et al."Lutein transport systems loaded with rice protein-based self-assembled nanoparticles."Food Biosci. 2021 Aug;42:101061 66. [IF=3.599] Liping Lu et al."Structures and exciton dynamics of aggregated lutein and zeaxanthin in aqueous media."J Lumin. 2020 Jun;222:117099 67. [IF=3.463] Ya-Zhuo Yang et al."Low temperature effects on carotenoids biosynthesis in the leaves of green and albino tea plant (Camellia sinensis (L.) O. Kuntze)."Sci Hortic-Amsterdam. 2021 Jul;285:110164 68. [IF=3.356] Wang Ya-Hui et al."Transcript profiling of genes involved in carotenoid biosynthesis among three carrot cultivars with various taproot colors."Protoplasma. 2020 May;257(3):949-963 69. [IF=4.952] Chengbin Zhao et al."Ultrasound-induced red bean protein–lutein interactions and their effects on physicochemical properties, antioxidant activities and digestion behaviors of complexes."Lwt Food Sci Technol. 2022 Apr;160:113322 70. [IF=7.514] Ying Chang et al."Glycosylated zein as a novel nanodelivery vehicle for lutein."Food Chem. 2022 May;376:131927 71. [IF=4.451] Huaqian Wu et al."Formation of pea protein amyloid fibrils to stabilize high internal phase emulsions for encapsulation of lutein."Journal of Functional Foods. 2022 Jul;94:105110 72. [IF=7.514] Ningxiang Yu et al."Preparation of novel self-assembled albumin nanoparticles from Camellia seed cake waste for lutein delivery."FOOD CHEMISTRY. 2022 Sep;389:133032 |
1. 抗菌消炎:金盏花提取物中的抗菌成分在碱性环境中效果较好。
2. 降血脂:金盏花中的皂甙可降低高脂血症患者的血清胆固醇、游离脂肪酸、磷脂、β-脂蛋白、总脂质和三酸甘油,对肝脏总脂质、胆固醇和三酸甘油也有降低作用。
微信搜索化工百科或扫描下方二维码,添加化工百科小程序,随时随地查信息!